Skip to main content
Log in

Cooling performance of Newtonian and non-Newtonian nanofluids in a square channel: experimental investigation and ANN modeling

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The cooling performance of Newtonian and non-Newtonian nanofluids in a square duct was identified experimentally. The flow regime was laminar. Two-step method was used to prepare stable dispersions of γ-Al2O3 and TiO2 nanoparticles. Water and ethylene glycol were used as the base fluids of Newtonian, and a 0.5 mass% carboxymethyl cellulose in water was used as the base fluid of the non-Newtonian nanofluids. Nanoparticle concentration was in the range of 0.1–1.5% by volume. Heat transfer coefficient of nanofluids enhances significantly relative to the base fluids. The enhancement of heat transfer coefficient of nanofluids is proportional to the Peclet number and nanofluid concentration. Nanoparticles type and the base fluid affected the Newtonian nanofluids performance, while for non-Newtonian nanofluids this is not the case. The improvement in nanofluids heat transfer coefficient is more than just related to their thermal conductivity enhancement. The obtained experimental data were modeled by the artificial neural network (ANN). Two empirical correlations were also fitted on the data. The experimental data are well predicted by the ANN models and empirical correlations. Statistical criteria show that the ANN models are more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

B :

Bias

Cp:

Specific heat (kJ kg−1 K−1)

D h :

Hydraulic diameter (m)

D o :

External diameter of middle tube (m)

D i :

Internal diameter of middle tube (m)

d :

External diameter of inner tube (m)

d p :

Nanoparticle diameter (m)

h :

Average heat transfer coefficient of Nanofluid (W m−2 K−1)

K :

Flow consistency index (Pa sn)

k :

Thermal conductivity (W m−1 K−1)

L :

Duct length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu:

Average Nusselt number (dimensionless)

n :

Flow behavior index (dimensionless)

Pe:

Peclet number (dimensionless)

Q :

Heat flux (W)

Re:

Reynolds number (dimensionless)

T s :

Duct wall temperature (K)

TLM :

Log-mean temperature difference (K)

U :

Overall heat transfer coefficient (W m−2 K−1)

u :

Average fluid velocity (m s−1)

w :

ANN weight

\(\dot{\gamma }\) :

Shear rate (s−1)

μ :

Viscosity (Pa s)

ρ :

Density (kg m−3)

φ :

Nanoparticle volume fraction (dimensionless)

bf:

Base fluid

in:

Input

nf:

Nanofluid

out:

Output

p:

Nanoparticles

References

  1. Bahiraei M, Hangi M. Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater. 2015;374:125–38. https://doi.org/10.1016/j.jmmm.2014.08.004.

    Article  CAS  Google Scholar 

  2. Ganvir RB, Walke PV, Kriplani VM. Heat transfer characteristics in nanofluid—a review. Renew Sustain Energy Rev. 2017;75:451–60. https://doi.org/10.1016/j.rser.2016.11.010.

    Article  Google Scholar 

  3. Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70. https://doi.org/10.1016/j.rser.2017.02.073.

    Article  CAS  Google Scholar 

  4. Hussein AM, Kadirgama K, Noor MM. Nanoparticles suspended in ethylene glycol thermal properties and applications: an overview. Renew Sustain Energy Rev. 2017;69:1324–30. https://doi.org/10.1016/j.rser.2016.12.047.

    Article  CAS  Google Scholar 

  5. Sundar LS, Sharma KV, Singh MK, Sousa ACM. Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor—a review. Renew Sustain Energy Rev. 2017;68:185–98. https://doi.org/10.1016/j.rser.2016.09.108.

    Article  CAS  Google Scholar 

  6. Sarviya RM, Fuskele V. Review on thermal conductivity of nanofluids. Mater Today Proc. 2017;4(2, Part A):4022–31. https://doi.org/10.1016/j.matpr.2017.02.304.

    Article  Google Scholar 

  7. Murshed SMS, Nieto de Castro CA. Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids—a review. Appl Energy. 2016;184:681–95. https://doi.org/10.1016/j.apenergy.2016.11.017.

    Article  CAS  Google Scholar 

  8. Deodhar MS, Shirode AR, Kadam VJ. High performance nanoparticle fluid suspensions (nanofluids): a future of pharmaceutical nanotechnology. Int J Pharm Sci Drug Res. 2014;6(4):263–70.

    CAS  Google Scholar 

  9. Raja M, Vijayan R, Dineshkumar P, Venkatesan M. Review on nanofluids characterization, heat transfer characteristics and applications. Renew Sustain Energy Rev. 2016;64:163–73. https://doi.org/10.1016/j.rser.2016.05.079.

    Article  CAS  Google Scholar 

  10. Utomo AT, Poth H, Robbins PT, Pacek AW. Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids. Int J Heat Mass Transf. 2012;55(25–26):7772–81. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.003.

    Article  CAS  Google Scholar 

  11. Nassan T, Zeinali Heris S, Noie Baghban SH. A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct. Int Commun Heat Mass Transf. 2010;37:924–8.

    Article  CAS  Google Scholar 

  12. Halelfadl S, Estellé P, Maré T. Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime. Exp Therm Fluid Sci. 2014;55:174–80. https://doi.org/10.1016/j.expthermflusci.2014.03.003.

    Article  CAS  Google Scholar 

  13. Mojarrad MS, Keshavarz A, Ziabasharhagh M, Raznahan MM. Experimental investigation on heat transfer enhancement of alumina/water and alumina/water–ethylene glycol nanofluids in thermally developing laminar flow. Exp Therm Fluid Sci. 2014;53:111–8. https://doi.org/10.1016/j.expthermflusci.2013.11.015.

    Article  CAS  Google Scholar 

  14. Amrollahi A, Rashidi AM, Lotfi R, Emami Meibodi M, Kashefi K. Convection heat transfer of functionalized MWNT in aqueous fluids in laminar and turbulent flow at the entrance region. Int Commun Heat Mass Transf. 2010;37(6):717–23.

    Article  CAS  Google Scholar 

  15. Hemmat Esfe M, Saedodin S, Mahian O, Wongwises S. Efficiency of ferromagnetic nanoparticles suspended in ethylene glycol for applications in energy devices: effects of particle size, temperature, and concentration. Int Commun Heat Mass Transf. 2014;58:138–46. https://doi.org/10.1016/j.icheatmasstransfer.2014.08.035.

    Article  CAS  Google Scholar 

  16. Farajollahi B, Etemad SG, Hojjat M. Heat transfer of nanofluids in a shell and tube heat exchanger. Int J Heat Mass Transf. 2010;53(1–3):12–7.

    Article  CAS  Google Scholar 

  17. Kumaresan V, Mohaideen Abdul Khader S, Karthikeyan S, Velraj R. Convective heat transfer characteristics of CNT nanofluids in a tubular heat exchanger of various lengths for energy efficient cooling/heating system. Int J Heat Mass Transf. 2013;60:413–21. https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.021.

    Article  CAS  Google Scholar 

  18. Abbasian Arani AA, Amani J. Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid. Exp Therm Fluid Sci. 2013;44:520–33. https://doi.org/10.1016/j.expthermflusci.2012.08.014.

    Article  CAS  Google Scholar 

  19. Nasiri M, Etemad SG, Bagheri R. Experimental heat transfer of nanofluid through an annular duct. Int Commun Heat Mass Transf. 2011;38(7):958–63. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.011.

    Article  CAS  Google Scholar 

  20. Haghighi EB, Utomo AT, Ghanbarpour M, Zavareh AIT, Poth H, Khodabandeh R, et al. Experimental study on convective heat transfer of nanofluids in turbulent flow: methods of comparison of their performance. Exp Therm Fluid Sci. 2014;57:378–87. https://doi.org/10.1016/j.expthermflusci.2014.05.019.

    Article  CAS  Google Scholar 

  21. Sadeghinezhad E, Togun H, Mehrali M, Sadeghi Nejad P, Tahan Latibari S, Abdulrazzaq T, et al. An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. Int J Heat Mass Transf. 2015;81:41–51. https://doi.org/10.1016/j.ijheatmasstransfer.2014.10.006.

    Article  CAS  Google Scholar 

  22. Meriläinen A, Seppälä A, Saari K, Seitsonen J, Ruokolainen J, Puisto S, et al. Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. Int J Heat Mass Transf. 2013;61:439–48. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.032.

    Article  CAS  Google Scholar 

  23. Doshmanziari FI, Kadivar MR, Yaghoubi M, Jalali-Vahid D, Arvinfar MA. Experimental and numerical study of turbulent fluid flow and heat transfer of Al2O3/water nanofluid in a spiral-coil tube. Heat Transf Eng. 2016. https://doi.org/10.1080/01457632.2016.1200380.

    Article  Google Scholar 

  24. Jumpholkul C, Mahian O, Kasaeian A, Dalkilic AS, Wongwises S. An experimental study to determine the maximum efficiency index in turbulent flow of SiO2/water nanofluids. Int J Heat Mass Transf. 2017;112:1113–21. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.007.

    Article  CAS  Google Scholar 

  25. Nasiri M, Etemad SG, Bagheri R. Turbulent convective heat transfer of nanofluids through a square channel. Korean J Chem Eng. 2011;28(12):2230–5.

    Article  CAS  Google Scholar 

  26. Zeinali Heris S, Nassan TH, Noie SH, Sardarabadi H, Sardarabadi M. Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct. Int J Heat Fluid Flow. 2013;44:375–82. https://doi.org/10.1016/j.ijheatfluidflow.2013.07.006.

    Article  CAS  Google Scholar 

  27. Zeinali Heris S, Nassan TH, Noie SH. CuO/water nanofluid convective heat transfer through square duct under uniform heat flux. Int J Nanosci Nanotechnol. 2011;7(3):111–20.

    Google Scholar 

  28. Mehrjou B, Heris SZ, Mohamadifard K. Experimental study of CuO/water nanofluid turbulent convective heat transfer in square cross-section duct. Exp Heat Transf. 2014;28(3):282–97. https://doi.org/10.1080/08916152.2013.871606.

    Article  CAS  Google Scholar 

  29. Peyghambarzadeh SM, Hashemabadi SH, Jamnani MS, Hoseini SM. Improving the cooling performance of automobile radiator with Al2O3/water nanofluid. Appl Therm Eng. 2011;31(10):1833–8.

    Article  CAS  Google Scholar 

  30. Hussein AM, Bakar RA, Kadirgama K. Study of forced convection nanofluid heat transfer in the automotive cooling system. Case Stud Therm Eng. 2014;2:50–61. https://doi.org/10.1016/j.csite.2013.12.001.

    Article  Google Scholar 

  31. Razi P, Akhavan-Behabadi MA, Saeedinia M. Pressure drop and thermal characteristics of CuO–base oil nanofluid laminar flow in flattened tubes under constant heat flux. Int Commun Heat Mass Transf. 2011;38(7):964–71. https://doi.org/10.1016/j.icheatmasstransfer.2011.04.010.

    Article  CAS  Google Scholar 

  32. Gherasim I, Roy G, Nguyen CT, Vo-Ngoc D. Experimental investigation of nanofluids in confined laminar radial flows. Int J Therm Sci. 2009;48(8):1486–93.

    Article  CAS  Google Scholar 

  33. Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007;27(8–9):1501–6. https://doi.org/10.1016/j.applthermaleng.2006.09.028.

    Article  CAS  Google Scholar 

  34. Jwo C-S, Jeng L-Y, Teng T-P, Chen C-C. Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid. J Alloys Compd. 2010;504(Supplement 1):S385–8.

    Article  Google Scholar 

  35. Ghahdarijani AM, Hormozi F, Asl AH. Convective heat transfer and pressure drop study on nanofluids in double-walled reactor by developing an optimal multilayer perceptron artificial neural network. Int Commun Heat Mass Transf. 2017;84:11–9. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.014.

    Article  CAS  Google Scholar 

  36. Yu W, France DM, Routbort JL, Choi SUS. Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng. 2008;29(5):432–60.

    Article  CAS  Google Scholar 

  37. Wang X-Q, Mujumdar AS. A review on nanofluids—part II: experiments and applications. Braz J Chem Eng. 2008;25(4):631–48.

    Article  Google Scholar 

  38. Godson L, Raja B, Mohan Lal D, Wongwises S. Enhancement of heat transfer using nanofluids—an overview. Renew Sustain Energy Rev. 2009;14(2):629–41.

    Article  Google Scholar 

  39. Pinto RV, Fiorelli FAS. Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl Therm Eng. 2016;108:720–39. https://doi.org/10.1016/j.applthermaleng.2016.07.147.

    Article  CAS  Google Scholar 

  40. Syam Sundar L, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35. https://doi.org/10.1016/j.rser.2012.11.041.

    Article  CAS  Google Scholar 

  41. Heris SZ, Etemad SG, Esfahany MN. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int Commun Heat Mass Transf. 2006;33(4):529–35.

    Article  Google Scholar 

  42. Rea U, McKrell T, Hu L, Buongiorno J. Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. Int J Heat Mass Transf. 2009;52(7–8):2042–8.

    Article  CAS  Google Scholar 

  43. Hojjat M, Etemad SG, Bagheri R, Thibault J. Convective heat transfer of non-Newtonian nanofluids through a uniformly heated circular tube. Int J Therm Sci. 2011;50(4):525–31.

    Article  CAS  Google Scholar 

  44. Hojjat M, Etemad SG, Bagheri R, Thibault J. Turbulent forced convection heat transfer of non-Newtonian nanofluids. Exp Therm Fluid Sci. 2011;35(7):1351–6.

    Article  CAS  Google Scholar 

  45. Hojjat M, Etemad SG, Bagheri R. Laminar heat transfer of non-Newtonian nanofluids in a circular tube. Korean J Chem Eng. 2010;27(5):1391–6.

    Article  CAS  Google Scholar 

  46. Hojjat M, Etemad SG, Bagheri R, Thibault J. Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature. Heat Mass Transf. 2011;47(2):203–9.

    Article  CAS  Google Scholar 

  47. Hojjat M, Etemad SG, Bagheri R, Thibault J. Pressure drop of non-newtonian nanofluids flowing through a horizontal circular tube. J Dispers Sci Technol. 2012;33(7):1066–70. https://doi.org/10.1080/01932691.2011.599216.

    Article  CAS  Google Scholar 

  48. Hojjat M, Etemad SG, Bagheri R, Thibault J. Thermal conductivity of non-Newtonian nanofluids: experimental data and modeling using neural network. Int J Heat Mass Transf. 2011;54(5–6):1017–23.

    Article  CAS  Google Scholar 

  49. Hojjat M, Etemad SG, Bagheri R, Thibault J. Rheological characteristics of non-Newtonian nanofluids: experimental investigation. Int Commun Heat Mass Transf. 2011;38(2):144–8.

    Article  CAS  Google Scholar 

  50. Pawar SS, Sunnapwar VK. Experimental studies on heat transfer to Newtonian and non-Newtonian fluids in helical coils with laminar and turbulent flow. Exp Therm Fluid Sci. 2013;44:792–804. https://doi.org/10.1016/j.expthermflusci.2012.09.024.

    Article  CAS  Google Scholar 

  51. Shojaeian M, Karimzadehkhouei M, Koşar A. Experimental investigation on convective heat transfer of non-Newtonian flows of Xanthan gum solutions in microtubes. Exp Therm Fluid Sci. 2017;85:305–12. https://doi.org/10.1016/j.expthermflusci.2017.02.025.

    Article  CAS  Google Scholar 

  52. Kline SJ, McClintock FA. Describing uncertainties in single-sample experiments. Mech Eng. 1953;75:3.

    Google Scholar 

  53. Moffat RJ. Describing the uncertainties in experimental results. Exp Therm Fluid Sci. 1988;1(1):3–17. https://doi.org/10.1016/0894-1777(88)90043-X.

    Article  Google Scholar 

  54. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989;2(5):359–66. https://doi.org/10.1016/0893-6080(89)90020-8.

    Article  Google Scholar 

  55. Lai WY, Vinod S, Phelan PE, Ravi P. Convective heat transfer for water-based alumina nanofluids in a single 1.02-mm tube. J Heat Transf. 2009;131(11):112401.

    Article  Google Scholar 

  56. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43(19):3701–7.

    Article  CAS  Google Scholar 

  57. Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    Article  CAS  Google Scholar 

  58. Anoop KB, Sundararajan T, Das SK. Effect of particle size on the convective heat transfer in nanofluid in the developing region. Int J Heat Mass Transf. 2009;52(9–10):2189–95. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.063.

    Article  CAS  Google Scholar 

  59. Ding Y, Wen D. Particle migration in a flow of nanoparticle suspensions. Powder Technol. 2005;149(2–3):84–92.

    Article  CAS  Google Scholar 

  60. Xuan Y, Li Q. Investigation on convective heat transfer and flow features of nanofluids. J Heat Transf. 2003;125(1):151–5.

    Article  CAS  Google Scholar 

  61. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52(7–8):2059–67. https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.023.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hojjat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasiri, M., Hojjat, M., Etemad, S.G. et al. Cooling performance of Newtonian and non-Newtonian nanofluids in a square channel: experimental investigation and ANN modeling. J Therm Anal Calorim 142, 2189–2202 (2020). https://doi.org/10.1007/s10973-020-09309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-09309-3

Keywords

Navigation