Skip to main content
Log in

Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The aim of the article was to examine the thermal degradation, thermal decomposition kinetics and dielectric behavior of novel poly(APHP-Am–Ac). For this purpose, the novel monomer, 4-(3-(4-acetamidophenyl)-3-oxoprop-1-en-1-yl)phenyl acrylate (APHP-Am–Ac), was synthesized from 1-(4-aminophenyl)-3-(4-hydroxyphenyl) prop-2-en-1-one (APHP) and acetic anhydride reaction. The homopolymer P(APHP-Am–Ac) was prepared by free radical polymerization within dimethylformamide at 80 °C. The presence of rigid and bulky chalcone units in polymer side chains significantly improved the solubility of polyamides, giving them an amorphous nature and good thermal stability. The structural characterization of homopolymer was accomplished using FT-IR and NMR techniques. The thermal stability and degradation features of homopolymer have been performed by using TG analysis and FT-IR during partial degradation at different temperatures. The glass transition temperature of homopolymer was determined by DSC analysis. For thermal decomposition kinetics of poly(APHP-Am–Ac), Flynn–Wall–Ozawa and Kissinger methods were applied to thermogravimetric curves and apparent activation energies (Ea) calculated from these two methods. According to FWO, the activation energy (Ea) of the first step and the second step was found as: 157.78 kJ mol−1 and 151.81 kJ mol−1, respectively. For Kissinger’s model, Ea was calculated as 154.3 kJ mol−1 and 142.83 kJ mol−1, respectively. The dielectric and conductivity measurements of homopolymer were investigated by impedance analyzer technique in a range of 10 Hz–20 kHz frequency at different temperatures (from 25 to 120 °C). The results have been plotted as a function of frequency and temperatures. The values increased significantly with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Faghihi K, Moghanian H. Synthesis and characterization of optically active poly(amide-imid)s containing photosensitive chalcone units in the main chain. Chin J Polym Sci. 2010;28:695–704.

    CAS  Google Scholar 

  2. Marioara N. Novel chalcone-based aromatic polyamides: synthesis, characterization, and properties. Des Monomers Polym. 2016;19(2):1–11.

    Google Scholar 

  3. Rami Reddy AV, Sreenivasulu Reddy P, Anand PS. Synthesis and characterization of novel aromatic poly(amide–imide)s with alternate (amide–amide) and (imide–imide) sequences. Eur Polym J. 1998;34:1441–6.

    CAS  Google Scholar 

  4. Aygün EN, Coşkun M. Poly[4-pyridinyl-4′-(2-methacryloyloxyethoxy)styryl ketone-co-2-hydroxypropyl methacrylate]: synthesis, characterization, thermal and electrical properties, and photocrosslinking behavior. El-Cezerî J Sci Eng. 2018;5:24–34.

    Google Scholar 

  5. Yerragunta V, Kumaraswamy T, Suman D, Anusha V, Patil P, Samhitha T. A review on Chalcones and its importance. PharmaTutor. 2013;1(2):54–9.

    Google Scholar 

  6. Vitorovic-Todorovic MD, Eric-Nikolic A, Kolundzija B, Hamel E, Ristic S, Juranic IO, Drakulic BJ. (E)-4-Aryl-4-oxo-2-butenoic acid amides, chalconeearoylacrylic acidchimeras: design, antiproliferative activity and inhibition of tubulin polymerization. Eur J Med Chem. 2013;62:40–50.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Yalçınkaya Z. Thermal decomposition kinetics of some transition metals complexes. Turk J Appl Sci Technol. 2017;1(1):31–8.

    Google Scholar 

  8. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand A Phys Chem. 1966;70A(6):487–523.

    Google Scholar 

  9. Wendlandt WW. Thermal analysis. 3rd ed. London: Wiley; 1986.

    Google Scholar 

  10. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5(15):285–92.

    CAS  Google Scholar 

  11. Coats AW, Redfen JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    CAS  Google Scholar 

  12. Gupta GK, Mondal MK. Kinetics and thermodynamic analysis of maize cob pyrolysis for its bioenergy potential using thermogravimetric analyzer. J Therm Anal Cal. 2019;137:1431–41.

    CAS  Google Scholar 

  13. Orsolya K, Bardos P, Boyadjiev S, Igricz T, Kristof Z, Imre N, Szilagyi M. Thermal properties of electrospun polyvinylpyrrolidone/titanium tetraisopropoxide composite nanofibers. J Therm Anal Cal. 2019;137:1249–54.

    Google Scholar 

  14. Biryan F, Demirelli K. Characterization, thermal behavior, and electrical measurements of poly[4-(2-bromoisobutyroyl methyl)styrene]. Adv Polym Teghnol. 2017;37:1994–2012.

    Google Scholar 

  15. Vyazovkin S, Burnham AK, Criado JM, Pe′rez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Act. 2011;520:1–19.

    CAS  Google Scholar 

  16. Yao F, Wu Q, Lei Y, Guo W, Xu Y. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    CAS  Google Scholar 

  17. Cao CR, Shu CM. Kinetic modeling for thermal hazard of 2,20-azobis(2-methylpropionamide) dihydrochloride using calorimetric approach and simulation. J Therm Anal Cal. 2019;137:1021–30.

    CAS  Google Scholar 

  18. Acquah C, Danquah MK, Moy CKS, Anwar M, Ongkudon CM. Thermogravimetric characterization of ex situ polymethacrylate (EDMA-co-GMA) monoliths. Can J Chem Eng. 2017;95:1345–51.

    CAS  Google Scholar 

  19. Slopiecka K, Bartocci P, Fantozzi F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7.

    CAS  Google Scholar 

  20. Modzelewska A, Pettit C, Achanta G, Davidson NE, Huang P, Khan SR. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem. 2006;14:3491–5.

    PubMed  CAS  Google Scholar 

  21. Mao Z, Zhang J, Toughening J. Effect of CPE on ASA/SAN binary blends at different temperatures. Appl Polym Sci. 2016;133:43353–60.

    Google Scholar 

  22. Jeske H, Schirp A, Cornelius F. Development of a thermogravimetric analysis (TGA) method for quantitative analysis of wood flour and polypropylene in wood plastic composites (WPC). Thermochim Act. 2012;543:165–71.

    CAS  Google Scholar 

  23. Sedaghat E, Rostami AA, Ghaemy M, Rostami A. Characterization, thermal degradation kinetics, and morphological properties of a graphene oxide/poly(vinyl alcohol)/starch nanocomposite. J Therm Anal Cal. 2019;136:759–69.

    CAS  Google Scholar 

  24. Meng XL, Huang YD, Yu H, Lv ZS. Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym Degrad Stab. 2007;92:962–7.

    CAS  Google Scholar 

  25. Kurt A, Koca M. Synthesis, characterization and thermal degradation kinetics of poly(3-acetylcoumarin-7-ylmethacrylate) and its organoclay nanocomposites. J Eng Res. 2016;4:46–65.

    CAS  Google Scholar 

  26. Biryan F, Demirelli K. A methacrylate monomer bearing nitro, aryl, and hydroxyl side groups: homopolymerization, characterization, dielectric, and thermal degradation behaviors. J Appl Polym Sci. 2016;133:1–14.

    Google Scholar 

  27. Aboulkas A, El Harfi K. Study of the kinetics and mechanisms of thermal decomposition of moroccan tarfaya oil shale and its kerogen. Oil Shale. 2008;25:426–43.

    CAS  Google Scholar 

  28. Venkatesh M, Ravi P, Surya P. Tewari isoconversional kinetic analysis of decomposition of nitroimidazoles: friedman method vs Flynn–Wall–Ozawa method. J Phys Chem A. 2013;117:10162–9.

    PubMed  CAS  Google Scholar 

  29. Peterson JD, Vyazovkin S, Wight CA. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol Chem Phys. 2001;202:775–84.

    CAS  Google Scholar 

  30. Biryan F, Demirelli K. Thermal degradation kinetic, electrical and dielectric behavior of brush copolymer with a polystyrene backbone and polyacrylate-amide side chains/nanographene-filled composites. J Mol Struct. 2019;1186:187–203.

    CAS  Google Scholar 

  31. Liu P, Zhen W. Structure-property relationship, rheological behavior, and thermal degradability of poly(lactic acid)/fulvic acid amide composites. Polym Adv Technol. 2018;29:2192–203.

    CAS  Google Scholar 

  32. Vyazovkin S. Modification of the integral isoconversional method to account for variation in the activation energy. J Comput Chem. 2001;22:178–83.

    CAS  Google Scholar 

  33. Ozawa T. Kinetic analysis of derivative curves in thermal analysis. J Therm Anal Cal. 1970;2:301–24.

    CAS  Google Scholar 

  34. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    CAS  Google Scholar 

  35. Kurt A. Thermal decomposition kinetics of poly(nButMA-b-St) diblock copolymer synthesized by ATRP. J Appl Polym Sci. 2009;114:624–9.

    CAS  Google Scholar 

  36. Gasparovie L, Labovsky J, Markos J, Jelemensky L. Calculation of kinetic parameters of the thermal decomposition of wood by distributed activation energy model (DAEM). Chem Biochem Eng Q. 2012;26:45–53.

    Google Scholar 

  37. Zhang C, Guo X, Ma S, Zheng Y, Xu J, Ma H. Synthesis of a novel branched cyclophosphaene-PEPA flame retardant and its application on polypropylene. J Therm Anal Cal. 2019;137:33–42.

    CAS  Google Scholar 

  38. Zheng W, Wong SC. Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol. 2003;63:225–35.

    CAS  Google Scholar 

  39. Bal K, Kothari VK. Measuremet of dielectric properties of textile materials and their applications. Ind J Fıbre Tex Res. 2009;34:191–9.

    CAS  Google Scholar 

  40. Patel PK, Rani J, Adhlakha N, Singh H, Yadav KL. Enhanced dielectric properties of doped barium titanate ceramics. J Phys Chem Solids. 2013;74:545–9.

    Google Scholar 

  41. Belakere NN, Misra SCK, Ram MK, Rout DK, Gupta R, Malhotra BD, Chandra S. Interfacial polarization in semiconducting polypyrrole thin films. J Phys Conden Matter. 1992;4:5747–56.

    Google Scholar 

  42. Biryan F, Demirelli K. Temperature-frequency dependence on electrical properties of EuCI3 based composites, thermal behaviors and preparation of poly(3-acetamidopropyl acrylate). Ferroelectrics. 2018;526:76–94.

    CAS  Google Scholar 

  43. Ku CC, Liepins R. Electrical properties of polymers: chemical principles. Munich: Hanser; 1987. p. 11.

    Google Scholar 

  44. Abd El-kader FH, Osman WH, Mahmoud KH, Basha MAF. Dielectric investigations and ac conductivity of polyvinyl alcohol films doped with europium and terbium chloride. Phys B Conden Matter. 2008;403:3473–84.

    CAS  Google Scholar 

  45. Aziz SB, Woo TJ, Kadir MFZ, Ahmed HM. A conceptual review on polymer electrolytes and ion transport models. J Sci Adv Mat Dev. 2018;3:1–17.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Biryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biryan, F., Pihtili, G. Fabrication of a novel acrylate polymer bearing chalcone and amide groups and investigation of its thermal and isoconversional kinetic analysis. J Therm Anal Calorim 139, 3857–3870 (2020). https://doi.org/10.1007/s10973-019-09243-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09243-z

Keywords

Navigation