Skip to main content
Log in

Low-temperature oxidation reactions of crude oils using TGA–DSC techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, combustion behaviour of three crude oils with different °API gravities was analysed. The thermogravimetric analyser (TGA) and differential scanning calorimeter (DSC) experiments were performed using three different heating rates (2, 5, and 10 °C min−1) under air atmosphere. The reaction regions, burn-out temperatures, and peak temperatures were determined accordingly. Two main reaction regions, particularly the low-temperature oxidation (LTO) and high-temperature oxidation (HTO) reactions, were figured out in TGA and DSC curves, which suggested exothermic behaviour. Kinetic parameters of the crude oils were determined using model free methods (Ozawa–Flynn–Wall, OFW, and Kissinger–Akahira–Sunose, KAS), which allows the calculation of kinetic properties at progressive conversion degrees without the requirement of any reaction models and f(α) estimations. The variation in activation energy with respect to the conversion degree pointed out that the LTO reaction stage can be subdivided into three subzones. The results indicated that the activation energies were changing depending on the conversion degree, which is an indication of complex reaction mechanisms. The change in activation energy with respect to conversion degree showed slight variation for heavy crude oil compared with that in light crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DSC:

Differential scanning calorimeter

ISC:

In situ combustion

KAS:

Kissinger–Akahira–Sunose method

OFW:

Ozawa–Flynn–Wall method

TGA:

Thermogravimetric analyser

E :

Activation energy (kJ mol−1)

R :

Gas constant

T :

Temperature (°C)

β :

Heating rate (°C min−1)

References

  1. Kok MV. Characterization of medium and heavy crude oils using thermal analysis techniques. Fuel Process Technol. 2011;92:1026–31.

    Article  CAS  Google Scholar 

  2. Khansari Z, Gates ID, Mahinpey N. Detailed study of low temperature oxidation of an Alaska heavy oil. Energy Fuels. 2012;26:1592–7.

    Article  CAS  Google Scholar 

  3. Al-Saffar H, Price D, Soufi A, Hughes R. Distinguishing between overlapping low temperature and high temperature oxidation data obtained from a pressurised flow reactor system using consolidated core material. Fuel. 2000;79:723–32.

    Article  CAS  Google Scholar 

  4. Murugan P, Mahinpey N, Mani T, Asghari K. Effect of low temperature oxidation on the pyrolysis and combustion of whole oil. Energy. 2010;35:2317–22.

    Article  CAS  Google Scholar 

  5. Zhao RB, Wei YG, Wang ZM, Yan W, Yang HJ, Liu SJ. Kinetics of low temperature oxidation of light crude oil. Energy Fuels. 2016;30:2647–54.

    Article  CAS  Google Scholar 

  6. Liu PG, Pu WP, Li YB, Tang MD, Gu F, Wang JF. Low temperature isothermal oxidation of crude oil. Petrol Sci Technol. 2016;34(9):838–44.

    Article  CAS  Google Scholar 

  7. Li YB, Chen YF, Pu WP, Dong H, Gao H, Jin FY, Wei B. Low temperature oxidation characteristics analysis of ultra-heavy oil by thermal methods. J Ind Eng Chem. 2017;48:249–58.

    Article  CAS  Google Scholar 

  8. Chen Z, Wang L, Tang L, Huang A. Low temperature oxidation experiments and kinetics model of heavy oil. Petrol Explor Dev. 2012;4(2):58–62.

    CAS  Google Scholar 

  9. Khansari Z, Gates ID, Mahinpey N. Low temperature oxidation of Lloydminster heavy oil: kinetic Study and product sequence estimation. Fuel. 2014;115:534–8.

    Article  CAS  Google Scholar 

  10. Niu B, Ren S, Wang D, Tang L, Chen B. Low temperature oxidation of oil components in an air injection process for improved oil recovery. Energy Fuels. 2011;25:4299–304.

    Article  CAS  Google Scholar 

  11. Pu WP, Yuan YD, Jin FY, Wang L, Qian Z, Li YB, Li D, Chen YF. Low temperature oxidation and characterization of heavy oil via thermal analysis. Energy Fuels. 2015;29:1151–9.

    Article  CAS  Google Scholar 

  12. Zhao RB, Wei YG, Wang ZM, Yan W, Yang HJ, Liu SJ. Low temperature oxidation and thermal kinetics analysis of light and medium crude oils. Petrol Sci Technol. 2018;36(7):540–6.

    Article  CAS  Google Scholar 

  13. Zhang L, Deng J, Wang L, Chen Z, Ren S, Hu C, Zhang S. Low temperature oxidation characteristics and its effect on the critical cooking temperature of heavy oils. Energy Fuels. 2015;29:538–45.

    Article  Google Scholar 

  14. Kok MV, Gul KG. Thermal characteristics and kinetics of crude oils and SARA fractions. Thermochim Acta. 2013;569:66–70.

    Article  CAS  Google Scholar 

  15. Kok MV. Thermal behavior and kinetics of crude oils at low heating rates by differential scanning calorimeter. Fuel Process Technol. 2012;96:123–7.

    Article  CAS  Google Scholar 

  16. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Chiba Inst Tech. 1971;16:22–31.

    Google Scholar 

  17. Ozawa TA. New method of analyzing thermogravimetric data. Chem Soc Jpn. 1965;38(11):1881–6.

    Article  CAS  Google Scholar 

  18. Flynn JL, Wall LA. General threatment of the thermogravimetry of polymers. J Res Natl Bureau Stand. 1966;70A–6:487–523.

    Article  Google Scholar 

  19. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  20. Gui B, Yang QY, Wu HJ, Zhang X, Lu Y. Study of the effects of low temperature oxidation on the chemical composition of a light crude oil. Energy Fuels. 2010;24:1139–45.

    Article  CAS  Google Scholar 

  21. Pu WF, Liu PG, Jia H, Zhao S, Du DJ, Wang S, Sun BS, Chen YF. Comparative study of light and heavy oils oxidation using thermal analysis methods. Petrol Sci Technol. 2015;33:1357–65.

    Article  CAS  Google Scholar 

  22. Yi BL, Hao G, Pu WF, Liang L, Yafei C, Aujun B. Study of catalytic effect of copper oxide on the low temperature oxidation of Tahe ultra-heavy oil. J Therm Anal Calorim. 2019;135(6):3353–62.

    Article  Google Scholar 

  23. Kok MV, Varfolomeev MA, Nurgaliev DK. Crude oil characterization using TGA–DTA, TGA–FTIR and TGA–MS techniques. J Petrol Sci Eng. 2017;154:537–42.

    Article  CAS  Google Scholar 

  24. Kok MV. Effect of particle size and heating rate n combustion of Silopi asphaltite. Energy Fuels. 2002;16(3):785–90.

    Article  Google Scholar 

  25. Kok MV. An investigation into the combustion curves of lignites. J Therm Anal Calorim. 2001;64(3):1319–23.

    Article  CAS  Google Scholar 

  26. Kok MV. Effect of different clay concentrations on crude oil combustion kinetics by thermogravimetry. J Therm Anal Calorim. 2010;99(3):779–83.

    Article  CAS  Google Scholar 

  27. Kandasamy J, Kok MV, Gokalp I. Combustion properties and kinetics of different biomass samples using TGA–MS technique. J Therm Anal Calorim. 2017;127:1361–70.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed according to the Russian Government Program of Competitive Growth of Kazan Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Versan Kok.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kok, M.V., Varfolomeev, M.A. & Nurgaliev, D.K. Low-temperature oxidation reactions of crude oils using TGA–DSC techniques. J Therm Anal Calorim 141, 775–781 (2020). https://doi.org/10.1007/s10973-019-09066-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09066-y

Keywords

Navigation