Skip to main content

Advertisement

Log in

Binding ability of sodium valproate with cationic surfactants and effect on micellization: calorimetric, surface tension, light scattering and spectroscopic approach

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The interactions of surfactant molecules with biologically active pharmaceutical ingredients remain an important area of research due to the necessity to improve drug delivery and solubilization systems. In the present study, the various interactions present between a hydrophilic drug sodium valproate (SV) and cationic surfactants, viz. dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB), hexadecyltrimethylammonium bromide (HTAB) and cetylpyridinium chloride (CPC), in aqueous media have been explored by using various techniques. The partitioning of SV in the micelles of respective surfactants has been studied by using isothermal titration calorimeter (ITC), and various parameters like binding/partitioning constant (K), enthalpy, entropy, free energy and stoichiometry of binding have been determined in post-micellar regions. The outcomes reveal that CPC binds strongly to the SV as it provides more hydrophobic interactions, and the positive values of enthalpy (ΔrH) are overcome by higher positive value of entropy (ΔrS) which makes the overall process thermodynamically favorable. The binding parameters obtained for TTAB, HTAB and CPC are further compared with the double-tailed surfactants, i.e., didodecyldimethylammonium bromide (DDAB) and dihexadecyldimethylammonium bromide (DHDAB). In addition, the effect of SV on the micellization behavior of TTAB, HTAB and CPC was also studied using ITC and surface tension measurements, and various thermodynamic and interfacial parameters have been derived. Dynamic light scattering and proton (1H) NMR studies have been performed to determine the locus of SV molecules within micelles of HTAB, TTAB and CPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

\(\Delta G_{\text{m}}^{ \circ }\) :

Standard free energy of micellization (kJ mol−1)

\(\Delta H_{\text{m}}^{ \circ }\) :

Standard molar enthalpy of micellization (kJ mol−1)

\(\Delta S_{\text{m}}^{ \circ }\) :

Standard entropy of micellization (J K−1 mol−1)

\(\Delta C_{\text{pm}}^{ \circ }\) :

Standard heat capacity of micellization (kJ K−1 mol−1)

\( \varGamma_{\hbox{max} }\) :

Surface excess (mol m−2)

\(n_{\text{s}}\) :

Number of species at air/solution interface

R:

Gas constant (8.314 J K−1 mol−1)

T :

Temperature (K)

\( A_{ \hbox{min} }\) :

Minimum area per molecule (nm2 molecule−1)

\(N_{A}\) :

Avogadro number (6.022 × 1023 mol−1)

\( \pi_{\text{cmc}}\) :

Surface pressure at CMC (J mol−1)

\(\gamma^{0}\) :

Surface tension of water/solution

\( \gamma_{\text{cmc}}\) :

Surface tension at CMC

\(\Delta G_{\text{ads}}^{ \circ }\) :

Free energy of adsorption (kJ mol−1)

\(p\) :

Packing parameter

\(V_{0}\) :

Volume of exclusion per monomer in aggregate

\(I_{c}\) :

Maximum chain length

n c :

Number of carbon atoms in the alkyl chain of surfactant

K :

Binding constant (M−1)

ΔrH :

Enthalpy of binding (kJ mol−1)

ΔrG :

Free energy of binding (kJ mol−1)

ΔrS :

Entropy of binding (J K−1 mol−1)

n :

Stoichiometry of binding

N :

Number of drug molecules bound with surfactant

x :

Aggregation number of surfactant

D h :

Hydrodynamic diameter (nm)

δ :

Chemical shift in 1H NMR

References

  1. Parker BM, Cusack BJ, Vestal RE. Pharmacokinetic optimization of drug therapy in elderly patients. Drug Aging. 1995;7:10–8.

    Google Scholar 

  2. Chen ZG. Small molecule delivery by nanoparticles for anticancer therapy. Trends Mol Med. 2010;16:594–602.

    CAS  PubMed  Google Scholar 

  3. Vrignaud S, Benoit JP, Saulnier P. Strategies for the nanoencapsulation of hydrophilic molecules in polymer based nanoparticles. Biomaterials. 2011;32:8593–604.

    CAS  PubMed  Google Scholar 

  4. Cohen S, Bernstein H. Microparticulate systems for the delivery of proteins and vaccines. 1st ed. New York: Marcel Dekker; 1996.

    Google Scholar 

  5. Rangel Yagui CO, Hsu HWL, Pessoa-Jr A, Tavares LC. Micellar solubilization of drugs. Braz J Pharm Sci. 2005;41:237–46.

    CAS  Google Scholar 

  6. Torchilin VP. Structure and design of polymeric surfactant based drug delivery systems. J Control Release. 2001;73:137–72.

    CAS  PubMed  Google Scholar 

  7. Rub MA, Asiri AM, Naqvi AZ, Khan AAP, Kabir-ud-din. Interactions of amphiphilic drug imipramine hydrochloride with Gemini surfactants at different temperatures. J Mol Liq. 2014;194:234–40.

    Google Scholar 

  8. Lawrence MJ. Surfactant systems: their use in drug delivery. Chem Soc Rev. 1994;23:417–24.

    CAS  Google Scholar 

  9. Tiera VAO, Winnik FM, Tiera MJ. Interaction of amphiphilic derivatives of chitosan with DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). J Therm Anal Calorim. 2010;100:309–13.

    CAS  Google Scholar 

  10. Mihlej T, Stefanic Z, Tomasic V. Thermal and structural properties of surfactant-picrate compounds. Effect of the alkyl chain number on the same ammonium head group. J Therm Anal Calorim. 2012;108:1261–72.

    Google Scholar 

  11. Rosen MJ, Kunjappu JT. Characteristic features of surfactants, Surfactants and Interfacial Phenomena. 4th ed. New York: Wiley; 1989. p. 1–38.

    Google Scholar 

  12. Fendler JH. Membrane mimetic chemistry: characterizations and applications of micelles, microemulsions, monolayers, bilayers, vesicles, host-guest systems, and polyions. 2nd ed. New York: Wiley; 1982.

    Google Scholar 

  13. Daull P, Lallemand F, Garrigue JS. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J Pharm Pharmacol. 2014;66:531–41.

    CAS  PubMed  Google Scholar 

  14. Aoyagi T, Terashima O, Suzuki N, Matsui K, Nagase Y. Polymerization of benzalkonium chloride type monomer and application to precutaneous drug absorption enhancer. J Control Release. 1990;13:63–71.

    CAS  Google Scholar 

  15. Baudouin C, De Lunardo C. Short term comparative study of topical 2% carteolol with and without benzalkonium chloride in healthy volunteers. Br J Ophthalmol. 1998;82:39–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfister RR, Burstein N. The effects of ophthalmic drugs, vehicles and preservatives on corneal epithelium: a scanning electron microscope study. Invest Ophth Vis Sci. 1976;15:246–59.

    CAS  Google Scholar 

  17. Paulsson M, Edsman K. Controlled drug release from gel using surfactant aggregates. II vesicles formed from mixtures of amphiphilic drugs and oppositely charged surfactants. Pharm Res. 2001;18:1586–92.

    CAS  PubMed  Google Scholar 

  18. Akhtar F, Hoque MA, Khan MA. Interactions of cefadroxyl monohydrate with hexadecyltrimethyl ammonium bromide and sodium dodecyl sulphate. J Chem Thermodyn. 2008;40:1082–6.

    CAS  Google Scholar 

  19. Enache M, Volanschi E. Spectral studies on the molecular interaction of anticancer drug mitoxantrone with CTAB micelles. J Pharm Sci. 2011;100:558–65.

    CAS  PubMed  Google Scholar 

  20. Gilbert P, Moore LE. Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol. 2005;99:703–15.

    CAS  PubMed  Google Scholar 

  21. Madunic- Cacic D, Sak-Bonsar M, Galovic O, Sakac N, Matesic-Puac R. Determination of cationic surfactants in pharmaceutical disinfectants using a new sensitive potentiometric sensor. Talanta. 2008;76:259–64.

    CAS  PubMed  Google Scholar 

  22. Posner EB, Mohamed K, Marson AG. A systematic review of treatment of typical absence seizures in children and adolescents with ethosuximide, sodium valproate or lamotrigine. Seizure. 2005;14:117–22.

    PubMed  Google Scholar 

  23. Petrusevski G, Naumov P, Jovanovski G, Bogoeva-Gaceva G, Ng SW. Solid-state forms of sodium valproate, active component of the anticonvulsant drug epilim. Chem Med Chem. 2008;3:1377–86.

    CAS  PubMed  Google Scholar 

  24. Qamar S, Brown P, Ferguson S, Khan RA, Ismail B, Khan AR, Sayed M, Khan AM. The interaction of a model active pharmaceutical with cationic surfactant and the subsequent design of drug based ionic liquid surfactants. J Colloid Interface Sci. 2016;481:117–24.

    CAS  PubMed  Google Scholar 

  25. Waters LJ, Hussain T, Parkes GMB. Titration calorimetry of surfactant-drug interactions: micelle formation and saturation studies. J Chem Thermodyn. 2012;53:36–41.

    CAS  Google Scholar 

  26. Rodrigue-Laguna N, Reyes-Garcia LI, Pacheco-Gomez R, Flores R, Rojas-Hernandez A, Gomez-Balderas R. Thermodynamic study of complexation ofZn(II)/L (L ̅ = acetate, indomethacin and diclofenac anions) by isothermal titration calorimetry. J Therm Anal Calorim. 2019;136:1701–9.

    Google Scholar 

  27. Sun N, Shi L, Lu F, Xie S, Sun P, Zheng L. Spontaneous vesicle phase formation by linear pseudo-oligomeric surfactant in aqueous solutions. Langmuir. 2015;31:2281–7.

    CAS  PubMed  Google Scholar 

  28. Kreke PJ, Magid LJ, Gee JC. 1H and 13C NMR studies of mixed counterion, cetyltrimethyl ammonium bromide/cetyltrimethyl ammonium dichlorobenzoate, surfactant solutions: the intercalation of aromatic counterions. Langmuir. 1996;12:699–705.

    CAS  Google Scholar 

  29. Hou Z, Li Z, Wang H. Interactions between poly (ethylene oxide) and sodium dodecyl sulfonate as studied by surface tension, conductivity, viscosity, electron spin resonance and nuclear magnetic resonance. Colloid Polym Sci. 1999;277:1011–8.

    CAS  Google Scholar 

  30. Bai G, Wang J, Yan H, Li Z, Thomas RK. Thermodynamics of molecular self-assembly of two series of double-chain singly charged cationic surfactants. J Phys Chem. 2001;105:9576–80.

    CAS  Google Scholar 

  31. Stodghill SP, Smith AE, O’Haver JH. Thermodynamics of micellization and adsorption of three alkyltrimethyl ammonium bromide using isothermal titration calorimetry. Langmuir. 2004;20:11387–92.

    CAS  PubMed  Google Scholar 

  32. Tong W, Zheng Q, Shao S, Lei Q, Fang W. Critical micellar concentration of quaternary ammonium surfactants with hydroxyethyl substituents on headgroups determined by isothermal titration calorimeter. J Chem Eng Data. 2010;55:3766–71.

    CAS  Google Scholar 

  33. Chatterjee A, Moulik SP, Sanyal SK, Mishra BK, Puri PM. Thermodynamics of micelle formation of ionic surfactants: acritical assessment for sodium dodecyl sulfate, cetylpyridinium chloride and dioctyl sulfosuccinate (Na salt) by microcalorimetric, conductometric, and tensiometric measurements. J Phys Chem B. 2001;105:12823–31.

    CAS  Google Scholar 

  34. Banipal TS, Kaur H, Banipal PK, Sood AK. Effect of head groups, temperature and polymer concentration on surfactant-polymer interactions. J Surf Deterg. 2014;17:1181–91.

    CAS  Google Scholar 

  35. Bhardwaj V, Bhardwaj T, Sharma K, Gupta A, Chauhan S, Cameotra SS, Sharma S, Gupta R, Sharma P. Thermo-acoustic investigation of sodium dodecyl sulfate and antimicrobial drug (Levofloxacin) for potential pharmaceutical application. RSC Adv. 2014;4:24935–43.

    CAS  Google Scholar 

  36. Taheri-Kafrani A, Bordbar AK. Energitics of micellizaion of sodium n-dodecyl sulfate at physiological conditions using isothermal titration calorimetry. J Therm Anal Calorim. 2009;98:567–75.

    CAS  Google Scholar 

  37. Zana R. Dimeric (Gemini) surfactants: effect of the spacer group on the association behavior in aqueous medium. J Colloid Interface Sci. 2002;248:203–20.

    CAS  PubMed  Google Scholar 

  38. Rosen MJ. Surfactants and interfacial phenomenon. 3rd ed. New York: Wiley; 2004.

    Google Scholar 

  39. Anand K, Yadav OP, Singh PP. Studies on the surface and thermodynamic properties of some surfactants in aqueous water + 1,4 dioxane solutions. Colloids Surf A. 1991;55:345–58.

    CAS  Google Scholar 

  40. Naqvi AZ, Al-dahbali GA, Akram M, Kabir-ud-din. Adsorption and micellization behavior of cationic surfactants (Gemini and conventional)-Amphiphilic drug systems. J Solut Chem. 2013;42:172–89.

    CAS  Google Scholar 

  41. Khatua PK, Ghosh S, Ghosh SK, Bhattacharya SC. Characterization of binary surfactant mixtures (cetylpyridinium chloride and Tween 60) in an aqueous medium. J Dispers Sci Technol. 2004;25:741–8.

    CAS  Google Scholar 

  42. Mukhm T, Ismail K. Micellization of cetylpyridinium chloride in aqueous lithium chloride, sodium chloride and potassium chloride media. J Surface Sci Technol. 2005;21:113–27.

    Google Scholar 

  43. Gokturk S, Aslan S. Study on binding properties of poorly soluble drug trimethoprim in anionic micellar solutions. J Dispers Sci Technol. 2014;35:84–92.

    CAS  Google Scholar 

  44. Sharma R, Mahajan S, Mahajan RK. Surface adsorption and mixed micelle formation of surface ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A. 2013;427:62–75.

    CAS  Google Scholar 

  45. Tanford C. The hydrophobic effect: formation of micelles and biological membranes. New York: Wiley; 1980.

    Google Scholar 

  46. Oda M, Xi Z, Inaba S, Slack RL, Ishima R. Binding thermodynamics of metal ions to HIV-1 ribonuclease H domain. J Therm Anal Calorim. 2019;135:2647–53.

    CAS  PubMed  Google Scholar 

  47. Talele P, Choudhary S, Kishore N. Understanding thermodynamics of drug partitioning in micelles and delivery to protein: studies with naproxen, diclofenac sodium, tetradecyltrimethyl ammonium bromide, and bovine serum albumin. J Chem Thermodyn. 2016;92:182–90.

    CAS  Google Scholar 

  48. Choudhary S, Kishore N. Drug-protein interactions in micellar media: thermodynamic aspects. J Colloid Interface Sci. 2014;413:118–26.

    CAS  PubMed  Google Scholar 

  49. Mata J, Varade D, Bahadur P. Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta. 2005;428:147–55.

    CAS  Google Scholar 

  50. Banipal TS, Kaur H, Baniapl PK. Studies on the binding ability of diclofenac sodium to cationic surfactants micelles in aqueous ethanol solutions. J Therm Anal Calorim. 2017;128:501–11.

    CAS  Google Scholar 

  51. Candau S, Zana R. Effect of alcohols on the properties of micellar systems: III. Elastic and quasielastic light scattering study. J Colloid Interface Sci. 1981;84:206–19.

    CAS  Google Scholar 

  52. Movchan TG, Soboleva IV, Plotnikova EV, Shchekin AK, Rusanov AI. Dynamic light scattering study of cetyltrimethylammonium bromide aqueous solutions. Colloid J. 2012;74:239–47.

    CAS  Google Scholar 

  53. Shakeel M, Mahmood K. Thermodynamic and solution properties of sodium valproate in aqueous solution and its interaction with cetyl trimethylammonium bromide (CTAB). J Mol Liq. 2019;285:158–64.

    CAS  Google Scholar 

  54. Singh O, Kaur R, Mahajan RK. Flavonoid-surfactant interactions: a detailed physicochemical study. Spectrochim Acta A. 2017;170:77–88.

    CAS  Google Scholar 

  55. Funasaki N, Nomura M, Ishikawa S, Neya S. NMR chemical shift references for binding constant determination in aqueous solutions. J Phys Chem B. 2001;105:7361–5.

    CAS  Google Scholar 

  56. Gaidamauskas E, Cleaver DP, Chatterjee PB, Crans DC. Effect of micellar and reverse micellar interface on solute location: 2,6-pyridinedicarboxylate in CTAB micelles and CTAB and AOT reverse micelles. Langmuir. 2010;26:13153–61.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Department of Science and Technology, India, for “DST-PURSE scheme,” and University Grant Commission, Delhi, India, for “UPE scheme,” are highly acknowledged for providing research facilities at Guru Nanak Dev University, Amritsar. One of the authors (Ms. Rupinder Kaur) is highly thankful to the UGC, Delhi, for providing financial support in the form of BSR fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarlok S. Banipal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 122 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, R., Banipal, P.K. & Banipal, T.S. Binding ability of sodium valproate with cationic surfactants and effect on micellization: calorimetric, surface tension, light scattering and spectroscopic approach. J Therm Anal Calorim 140, 2833–2847 (2020). https://doi.org/10.1007/s10973-019-09036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09036-4

Keywords

Navigation