Skip to main content
Log in

Thermal behavior analysis as a valuable tool for comparing ionic liquids of different classes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are neoteric solvents characterized by unique physicochemical properties and considerable structural variability. The thermal behavior of 24 ILs, belonging to two structurally related families with either bromide or Tf2N as counteranion, was analyzed. For bromide mono- and dicationic ionic liquids (DILs), thermal gravimetric analysis showed similar decomposition events, with only small gain in stability for a few members of the latter class. Conversely, all Tf2N DILs displayed higher stabilities (up to 34 K) than the corresponding monocations, thus highlighting the different role played by the two counteranions. Mono- and dicationic ILs bearing a reactive group on the imidazolium substituent resulted instead the least stable ILs studied. Differential scanning calorimetry analyses of most of the (D)ILs only showed glass transition temperatures, a behavior in agreement with the broad liquid range of ILs. The impact of the cationic structure and/or of the type of anion on the above-mentioned transition temperatures has been studied. The apparent activation energy (Ea) and the fragility index (m) for some (D)ILs have also been obtained. Finally, a few bromide (D)ILs presented peculiar thermal events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aparicio S, Atilhan M, Karadas F. Thermophysical properties of pure ionic liquids: review of present situation. Ind Eng Chem Res. 2010;49:9580–95.

    CAS  Google Scholar 

  2. Quraishi KS, Bustam MA, Krishnan S, Irfan Khan M, Wilfred CD, Leveque J. Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. J Therm Anal Calorim. 2017;129:261–70.

    CAS  Google Scholar 

  3. Zhang B, Liu SH. Thermal stability assessment of 4-amino-1,2,4-triazole picrate using thermal analysis method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08614-w.

    Article  Google Scholar 

  4. Jiang HC, Lin WC, Hua M, Pan X, Shu C, Jiang J. Analysis of thermal stability and pyrolysis kinetic of dibutyl phosphate-based ionic liquid through thermogravimetry, gas chromatography/mass spectrometry, and Fourier transform infrared spectrometry. J Therm Anal Calorim. 2019;138:489.

    CAS  Google Scholar 

  5. Welton T. Ionic liquids: a brief history. Biophys Rev. 2018;10:691–706.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chiappe C, Pomelli CS. Point-functionalization of ionic liquids: an overview of synthesis and applications. Eur J Org Chem. 2014;28:6120–39.

    Google Scholar 

  7. Idris A, Vijayaraghavan R, Rana UA, Patti AF, MacFarlane DR. Dissolution and regeneration of wool keratin in ionic liquis. Green Chem. 2014;16:2857–64.

    CAS  Google Scholar 

  8. Chiappe C, Rodriguez Douton MJ, Mezzetta A, Guazzelli L, Pomelli CS, Assanelli G, De Angelis AR. Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid. New J Chem. 2018;42(3):1845–52.

    CAS  Google Scholar 

  9. Palazzo I, Mezzetta A, Guazzelli L, Sartini S, Pomelli CS, Parker WO, Chiappe C. Chiral ionic liquids supported on natural sporopollenin microcapsules. RSC Adv. 2018;8:21174–83.

    CAS  Google Scholar 

  10. Isik M, Sardon H, Mecerreyes D. Ionic liquids and cellulose: dissolution, chemical modification and preparation of new cellulosic materials. Int J Mol Sci. 2014;15:11922–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Silva SS, Mano JF, Reis LR. Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 2017;19:1208–20.

    CAS  Google Scholar 

  12. Yang Q, Zhang Z, Sun X-G, Hu Y-S, Xing H, Dai S. Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev. 2018;47:2020–64.

    CAS  PubMed  Google Scholar 

  13. Ghorbanizamani F, Timur S. Ionic liquids from biocompatibility and electrochemical aspects towards applying in biosensing devices. Anal Chem. 2018;90:640–8.

    CAS  PubMed  Google Scholar 

  14. Longhi M, Arnaboldi S, Husanu E, Grecchi S, Buzzi IF, Cirilli R, Rizzo S, Chiappe C, Mussini PR, Guazzelli L. A family of chiral ionic liquids from the natural pool: relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochim Acta. 2019;298:194–209.

    CAS  Google Scholar 

  15. Plechkova NV, Seddon KR. Applications of ionic liquids in the chemical industry. Chem Soc Rev. 2008;37:123–50.

    CAS  PubMed  Google Scholar 

  16. Toledo Hijo AAC, Maximo GJ, Costa MC, Batista EAC, Meirelles AJA. Applications of ionic liquids in the food and bioproducts industries. ACS Sustain Chem Eng. 2016;4:5347–69.

    CAS  Google Scholar 

  17. Zhang H, Shi W, Cheng H, Chen S, Wang L. Effect of ionic liquid on crystallization kinetics and crystal form transition of poly(vinylidene fluoride) blends. J Therm Anal Calorim. 2018;132:1153–65.

    CAS  Google Scholar 

  18. Kar M, Tutusaus O, MacFarlane DR, Mohadi R. Novel and versatile room temperature ionic liquids for energy storage. Energy Environ Sci. 2019;12:566–71.

    CAS  Google Scholar 

  19. Wadekar VV. Ionic liquids as heat transfer fluids—an assessment using industrial exchanger geometries. Appl Therm Eng. 2017;111:1581–7.

    CAS  Google Scholar 

  20. Wang W, Wu Z, Li B, Sunden B. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer. J Therm Anal Calorim. 2019;136:1037–51.

    CAS  Google Scholar 

  21. Villanueva M, Coronas A, García J, Salgado J. Thermal stability of ionic liquids for their application as new absorbents. Ind Eng Chem Res. 2013;52:15718–27.

    CAS  Google Scholar 

  22. Nagendramma P, Khatri PK, Jain LS. Lubrication capabilities of amino acid based ionic liquids as green bio-lubricant additives. J Mol Liq. 2017;244:219–25.

    CAS  Google Scholar 

  23. Ide Y, Takahashi T, Iwai K, Nozoe K, Habu H, Tokudome S. Potential of ADN-based ionic liquid propellant for spacecraft propulsion. Procedia Eng. 2015;99:332–7.

    CAS  Google Scholar 

  24. Sun P, Armstrong DW. Ionic liquids in analytical chemistry. Anal Chim Acta. 2010;661:1–16.

    CAS  PubMed  Google Scholar 

  25. Anderson JL, Ding R, Ellern A, Armstrong DW. Structure and properties of high stability geminal dicationic ionic liquids. J Am Chem Soc. 2005;127:593–604.

    CAS  PubMed  Google Scholar 

  26. Guglielmero L, Mezzetta A, Guazzelli L, Pomelli CS, D’Andrea F, Chiappe C. Systematic synthesis and properties evaluation of dicationic ionic liquids, and a glance into a potential new field. Front Chem. 2018;6:612.

    PubMed  PubMed Central  Google Scholar 

  27. D’Anna F, Rizzo C, Vitale P, Lazzara G, Noto R. Dicationic organic salts: gelators for ionic liquids. Soft Matter. 2014;10:9281–92.

    PubMed  Google Scholar 

  28. D’Anna F, Nimal GHQ, Lazzara G, Noto R, Rizzo C, Seddon KR. Solution and thermal behavior of novel dicationic imidazolium ionic liquids. Org Biomol Chem. 2013;11:5836–46.

    PubMed  Google Scholar 

  29. Ji Y, Hou Y, Ren S, Yao C, Wu W. Highly efficient extraction of phenolic compounds from oil mixtures by trimethylamine-based dicationic ionic liquids via forming deep eutectic solvents. Fuel Process Technol. 2018;171:183–91.

    CAS  Google Scholar 

  30. Majhi D, Seth S, Sarkar M. Differences in the behavior of dicationic and monocationic ionic liquids as revealed by time resolved-fluorescence, NMR and fluorescence correlation spectroscopy. Phys Chem Chem Phys. 2018;20:7844–56.

    CAS  PubMed  Google Scholar 

  31. Maton C, De Vos N, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42:5963–77.

    CAS  PubMed  Google Scholar 

  32. Montalbán MG, Víllora G, Licence P. Ecotoxicity assessment of dicationic versus monocationic ionic liquids as a more environmentally friendly alternative. Ecotoxicol Environ Saf. 2018;150:129–35.

    PubMed  Google Scholar 

  33. Anthofer MH, Wilhelm ME, Cokoja M, Drees M, Herrmann WA, Kuhn FE. Hydroxy‐functionalized imidazolium bromides as catalysts for the cycloaddition of CO2 and epoxides to cyclic carbonates. ChemCatChem. 2015;7:94–8.

    CAS  Google Scholar 

  34. Guglielmero L, Mezzetta A, Pomelli CS, Chiappe C, Guazzelli L. Evaluation of the effect of the dicationic ionic liquid structure on the cycloaddition of CO2 to epoxides. J. CO2 Util. 2019;34:437–45.

    CAS  Google Scholar 

  35. Rocco I, D’Anna F, Mattiello L, Pandolfi F, Rizzo C, Feroci M. Cathodic behaviour of dicationic imidazolium bromides: the role of the spacer. Chem Cat Chem. 2019;6:4275–83.

    CAS  Google Scholar 

  36. Scalfani VF, Alshaikh AA, Bara JE. Analysis of the frequency and diversity of 1,3-dialkylimidazolium ionic liquids appearing in the literature. Ind Eng Chem Res. 2018;47:15971–81.

    Google Scholar 

  37. Chiappe C, Mezzetta A, Pomelli CS, Puccini M, Seggiani M. Product as reaction solvent: an unconventional approach for ionic liquid synthesis. Org Process Res Dev. 2016;20:2080–4.

    CAS  Google Scholar 

  38. Xiaohui Z, Dong A, Zhiwen Y. Adsorption and thermodynamic properties of dissymmetric gemini imidazolium. J Disper Sci Technol. 2017;38:296–302.

    Google Scholar 

  39. Moscardini A, Mezzetta A, Calisi N, Caporali S, Pomelli CS, Guazzelli L, Chiappe C. Investigation of a family of structurally-related guanidinium ionic liquids through XPS and thermal analysis. J Mol Liq. 2019;277:280–9.

    CAS  Google Scholar 

  40. Seddon RK, Stark A, Torres M-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl Chem. 2000;72:2275–87.

    CAS  Google Scholar 

  41. Shirota H, Mandai T, Fukazawa H, Kato T. Comparison between dicationic and monocationic ionic liquids: liquid density, thermal properties, surface tension, and shear viscosity. J Chem Eng Data. 2011;56:2453–9.

    CAS  Google Scholar 

  42. Matiello GI, Pazini A, da Silva KIM, da Costa RGM, Ebeling G, Dupont J, Limberger J, Scholten JD. Isothiouronium salts as useful and odorless intermediates for the synthesis of thiaalkylimidazolium ionic liquids. Tetrahedron Lett. 2019;60:780–4.

    CAS  Google Scholar 

  43. Li P-Y, Cheng K-Y, Zheng X-C, Liu P, Xu X-J. Facile synthesis of water-soluble graphene-based composite: non-covalently functionalized with chitosan-ionic liquid conjugation. Funct Mater Lett. 2016;9:1650045.

    Google Scholar 

  44. Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014;53:8651–64.

    CAS  Google Scholar 

  45. Gómez E, Calvarn N, Domínguez A. Thermal behaviour of pure ionic liquids Scott handy. Intechopen. 2015;8:199–228.

    Google Scholar 

  46. Moura Ramos JJ, Afonso CAM, Branco LC. Glass transition relaxation and fragility in two room temperature ionic liquids. J Therm Anal Calorim. 2003;71:659–66.

    CAS  Google Scholar 

  47. Moura-Ramos JJ, Correia NT. The Deborah number, relaxation phenomena and thermally stimulated currents. Phys Chem Chem Phys. 2001;3:5575–8.

    CAS  Google Scholar 

  48. Sippel P, Lunkenheimer P, Krohns S, Thoms E, Loidl A. Importance of liquid fragility for energy applications of ionic liquids. Sci. Rep. 2015;5:13922.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tao R, Gurung E, Cetin MM, Mayer MF, Quitevis EL, Simon SL. Fragility of ionic liquids measured by Flash differential scanning calorimetry. Thermochim Acta. 2017;654:121–9.

    CAS  Google Scholar 

  50. Moosavi M, Khashei F, Sharifi A, Mirzaei M. Transport properties of short alkyl chain length dicationic ionic liquids—the effect of alkyl chain length and temperature. Ind Eng Chem Res. 2016;55:9087–99.

    CAS  Google Scholar 

  51. Gómez E, Calvarn N, Domínguez A, Macedo EA. Thermal analysis and heat capacity of 1-Alkyl-3-methylimidazolium Ionic Liquids with NTf 2 , TFO DCA− Anions. Ind Eng Chem Res. 2013;52:2103–10.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the University of Pisa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Guazzelli.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezzetta, A., Perillo, V., Guazzelli, L. et al. Thermal behavior analysis as a valuable tool for comparing ionic liquids of different classes. J Therm Anal Calorim 138, 3335–3345 (2019). https://doi.org/10.1007/s10973-019-08951-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08951-w

Keywords

Navigation