Skip to main content
Log in

Laminar flow and heat transfer of water/NDG nanofluid on tube banks with rhombic cross section with different longitudinal arrangements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In present numerical study, water/NDG (nitrogen-doped graphene) nanofluid flow in different arrangements of rhombic tube banks is investigated in a two-dimensional space. Water/NDG nanofluid is considered in mass fractions of 0, 1, 2, 4 and 6% and Re numbers of 10, 100 and 450 as cooling fluid. The arrangements of tube banks are considered as ET (equilateral triangle), RS (rotated square) and ES (equal spacing) arrangements. Results revealed that the enhancement of mass fraction causes heat transfer enhancement which is due to the increase in thermal conductivity coefficient of cooling nanofluid compared to base fluid. The increase in Re causes the enhancement of average Nu which is due to better mixture of fluid layers with the enhancement of fluid velocity in higher Re which causes the reduction in temperature gradients among fluid layers away from tubes and homogeneous temperature distribution in these areas. Among investigated arrangements, RS has the highest Nu. Also, ET arrangement, compared to ES arrangement, has higher Nu. In all of the studied arrangements, the increase in Re causes the reduction in friction factor and the maximum values of friction factor are related to RS and ET arrangements, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

Cf:

Friction factor

C p :

Specific heat (J kg−1 K−1)

d :

Diameter of exchanger tube (m)

d :

Tube diameter

ES:

Equal spacing triangle

ET:

Equilateral triangle

h :

Convection heat transfer coefficient (W m−2 K−1)

k :

Thermal conductivity coefficient (W m−1 K−1)

L :

Length (m)

L ds :

Outlet length (m)

L tb :

Middle length (m)

L us :

Inlet length (m)

P :

Pressure (N m−2)

Re:

Reynolds number

RS:

Rotating square

T :

Temperature (K)

u :

x velocity (m s−1)

v :

y velocity (m s−1)

mass:

Mass fraction

ρ:

Density (kg m−3)

μ :

Viscosity (Pa s)

References

  1. Bergles AE. Recent developments in enhanced heat transfer. Heat Mass Transf. 2011;47:1001–8.

    Article  Google Scholar 

  2. Toghraie D, Abdollah MMD, Pourfattah F, Akbari OA, Ruhani B. Numerical investigation of flow and heat transfer characteristics in smooth, sinusoidal and zigzag-shaped microchannel with and without nanofluid. J Therm Anal Calorim. 2018;131(2):1757–66.

    Article  CAS  Google Scholar 

  3. Parsaiemehr M, Pourfattah F, Akbari OA, Toghraie D, Sheikhzadeh G. Turbulent flow and heat transfer of Water/Al2O3 nanofluid inside a rectangular ribbed channel. Phys E. 2018;96:73–84.

    Article  CAS  Google Scholar 

  4. Sarlak R, Yousefzadeh S, Akbari OA, Toghraie D, Sarlak S. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  5. Akbarinia A, Laur R. Investigating the diameter of solid particles effects on a laminar nanofluid flow in a curved tube using a to phase approach. Int J Heat Fluid Flow. 2009;30:706–14.

    Article  CAS  Google Scholar 

  6. Saidur R, Leong K, Mohammad H. A review on applications and challenges of nanofluids. Renew Sustain Energy Rev. 2011;15:1646–68.

    Article  CAS  Google Scholar 

  7. Buongiorno J. Convective transport in nanofluids. J Heat Transfer. 2006;128:240–50.

    Article  Google Scholar 

  8. Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASMEPubl-Fed. 1995;231:99–106.

    Google Scholar 

  9. Wang X-Q, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46:1–19.

    Article  Google Scholar 

  10. Santra AK, Sen S, Charaborty N. Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates. Int J Therm Sci. 2009;48:391–400.

    Article  CAS  Google Scholar 

  11. Mangrulkar CK, Dhoble AS, Deshmukh AR, Mandavgane SA. Numerical investigation of heat transfer and friction factor characteristics from in-line cam shaped tube bank in crossflow. Appl Therm Eng. 2017;110:521–38.

    Article  CAS  Google Scholar 

  12. Lavasani AMA, Maarefdoost T, Bayat H. Effect of blockage ratio on pressure drag and heat transfer of a cam-shaped tube. Heat Mass Transfer. 2016;52:1935–42.

    Article  CAS  Google Scholar 

  13. Lavasani AM, Bayat H, Maarefdoost T. Experimental study of convective heat transfer from in line cam shaped tube bank in crossflow. Appl Therm Eng. 2014;65:85–93.

    Article  Google Scholar 

  14. Bayat H, Lavasani AM, Maarefdoost T. Experimental study of thermal-hydraulic performance of cam-shaped tube bundle with staggered arrangement. Energy Convers Manage. 2014;85:470–6.

    Article  Google Scholar 

  15. Gamrat G, Marinet M, Person S. Numerical study of heat transfer over banks of rods in small Reynolds number cross-flow. Int J Heat Mass Transf. 2008;51:853–64.

    Article  CAS  Google Scholar 

  16. El-Shaboury AMF, Ormiston SJ. Analysis of laminar forced convection of air crossflow in in-line tube banks with nonsquare arrangements. Numer Heat Transf A Appl. 2005;48:99–126.

    Article  CAS  Google Scholar 

  17. Nouri-Borujerdi A, Lavasani A. Experimental study of forced convection heat transfer from a cam shaped tube in cross flows. Int J Heat Mass Transf. 2007;50:2605–11.

    Article  Google Scholar 

  18. Nouri-Borujerdi A, Lavasani AM. Pressure loss and heat transfer characterization of a cam-shaped cylinder at different orientations. ASME J Heat Transf. 2008;130:124503.

    Article  Google Scholar 

  19. Nouri-Borujerdi A, Lavasani A. Flow visualization around a non-circular tube. Int J Eng Trans B. 2006;19:73–82.

    Google Scholar 

  20. Khan WA, Culham JR, Yovanovich MM. Convection heat transfer from tube banks in cross flow: analytical approach. Int J Heat Mass Transf. 2006;49:4831–8.

    Article  CAS  Google Scholar 

  21. Ibrahim TA, Gomaa A. Thermal performance criteria of elliptic tube bundle in crossflow. Int J Therm Sci. 2009;48:2148–58.

    Article  Google Scholar 

  22. Gong B, Wang L-B, Lin Z-M. Heat transfer characteristics of a circular tube bank fin heat exchanger with fins punched curve rectangular vortex generators in the wake regions of the tubes. Appl Therm Eng. 2015;75:224–38.

    Article  Google Scholar 

  23. Bahaidarah HMS, Anand NK, Chen HC. A numerical study of fluid flow and heat transfer over a bank of flat tubes. Numer Heat Transf A Appl. 2005;48:359–85.

    Article  Google Scholar 

  24. Duangthongsuk W, Wongwises S. Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger. Int J Heat Mass Transf. 2009;52:2059–67.

    Article  CAS  Google Scholar 

  25. Abdel-Rehim ZS. A numerical study of heat transfer and fluid flow over an in-line tube bank. Energy Sour A Recov Util Environ Eff. 2012;34:2123–36.

    Article  CAS  Google Scholar 

  26. Bahaidarah HMS, Ijaz M, Anand NK. A numerical study of fluid flow and heat transfer over a series of in-line noncircular tubes confined in a parallel- plate channel. Numer Heat Transf B Fundam. 2006;50:79–119.

    Article  Google Scholar 

  27. Zhang LZ, Ouyang YW, Zhang ZG, Wang SF. Oblique fluid flow and convective heat transfer across a tube bank under uniform wall heat flux boundary conditions. Int J Heat Mass Transf. 2015;91:1259–72.

    Article  CAS  Google Scholar 

  28. Goodarzi M, Kherbeet ASH, Afrand M, Sadeghinezhad E, Mehrali M, Zahedi P, Wongwises S, Dahari M. Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluid. Int Commun Heat Mass Transf. 2016;76:l6–23.

    Article  Google Scholar 

  29. Mahmoudi AH, Pop I, Shahi M. Effect of magnetic field on natural convection in triangular enclosure filled with nanofluid. Int J Therm Sci. 2012;59:126–40.

    Article  CAS  Google Scholar 

  30. Moghaddaszadeh N, Esfahani JA, Mahian O. Performance enhancement of heat exchangers using eccentric tape inserts and nanofluids. J Therm Anal Calorim. 2019;137:865–77.

    Article  CAS  Google Scholar 

  31. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamental and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  32. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling andsimulation of nanofluid flows-part II. Appl Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  33. Safaei MR, Safdari Shadloo M, Goodarzi M, Hadjadj A, Goshayeshi HR, Afrand M, Kazi SN. A survey on experimental and numerical studies of convection heat transfer of nanofluids inside closed conduits. Adv Mech Eng. 2016;8(10):1–14.

    Article  CAS  Google Scholar 

  34. Mohammadi M, Abadeh A, Nemati-Farouji R, Passandideh-Fard M. An optimization of heat transfer of nanofluid flow in a helically coiled pipe using Taguchi method. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08167-y.

    Article  Google Scholar 

  35. Abadeh A, Mohammadi M, Passandideh Fard M. Experimental investigation on heat transfer enhancement for a ferrofluid in a helically coiled pipe under constant magnetic field. J Therm Anal Calorim. 2019;135:1069–79.

    Article  CAS  Google Scholar 

  36. Nishimura T, Itoh H, Ohya K, Miyashita H. Experimental validation of numerical analysis of flow across tube banks for laminar flow. J Chem Eng Jpn. 1991;24:666–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Energy Research Institute and the Research & Technology Administration of the University of Kashan for their support regarding this research (Grant No. 785398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GhanbarAli Sheikhzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzban, A., Sheikhzadeh, G. & Toghraie, D. Laminar flow and heat transfer of water/NDG nanofluid on tube banks with rhombic cross section with different longitudinal arrangements. J Therm Anal Calorim 140, 427–437 (2020). https://doi.org/10.1007/s10973-019-08812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08812-6

Keywords

Navigation