Skip to main content
Log in

Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the present research, an artificial neural network model was developed to predict the pool boiling heat transfer coefficient (HTC) of refrigerant-based nanofluids based on a large number of experimental data (1342) extracted from the literature. Diverse training algorithms, e.g., Bayesian regulation backpropagation, Levenberg–Marquardt (LM), Resilient backpropagation and scaled conjugate gradient were utilized. Besides, several transfer functions like log-sigmoid (logsig), radial basis (radbas), soft max transfer function (softmax), hard-limit (hardlim), tan-sigmoid (tansig) and triangular basis (tribas) were applied for the hidden layer, and their influences on model correctness were surveyed. The effects of heat flux, saturation pressure, nanoparticle thermal conductivity, base fluid thermal conductivity, nanoparticle concentration (mass%), nanoparticles size and lubricant concentration (mass%) on the pool boiling HTC of refrigerant-based nanofluids were determined over wide ranges of operating conditions. A network possessing one hidden layer with 19 neurons using tansig and purelin as transfer functions in hidden and output layers in a row was introduced as a model having the best performance. In addition, LM was known as a much more efficient train algorithm in comparison with others resulting in extremely precise prediction. The outcomes indicated the present model could accurately estimate the pool boiling HTC of refrigerant-based nanofluids with a correlation coefficient (R2) of 0.9948 and overall mean square error of 0.01529.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

MLFNN:

Multilayer feed-forward neural network

MLP:

Multilayer perceptron

FFANN:

Feed-forward artificial neural network

BP:

Backpropagation

R 2 :

Correlation coefficient

MRE:

Mean relative error

MSE:

Mean square error

N :

Number of experimental data points

Epoch:

Number of iteration in training process

h :

Relative pool boiling heat transfer coefficient (HTC) (W m−2 K−1)

P :

Pressure (kPa)

q :

Heat flux (kW m−2)

d p :

Particle size (nm)

k :

Thermal conductivity of nanoparticles (w m−1 k−1)

X :

Input variable

CNT:

Carbon nanotube

RI:

Relative importance (%)

Exp:

Experimental

min:

Minimum

max:

Maximum

N:

Number of experimental data points

p:

Nanoparticle

bf:

Base fluid

sat:

Saturation

φ p :

Particle concentration (mass%)

φ lub :

Lubricant concentration (mass%)

References

  1. Bayareh M, Mohammadi M. Multi-objective optimization of a triple shaft gas compressor station using imperialist competitive algorithm. Appl Therm Eng. 2016;109:384–400.

    Google Scholar 

  2. Webb RL, Pais C. Nucleate pool boiling data for five refrigerants on plain, integral-fin and enhanced tube geometries. Int J Heat Mass Transf. 1992;35(8):1893–904.

    CAS  Google Scholar 

  3. Salehi H, Hormozi F. Prediction of Al2O3–water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137(3):1069–82.

    CAS  Google Scholar 

  4. Nazari A, Saedodin S. An experimental study of the nanofluid pool boiling on the aluminium surface. J Therm Anal Calorim. 2019;135(3):1753–62.

    CAS  Google Scholar 

  5. Akbari A, Fazel SAA, Maghsoodi S, Kootenaei AS. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids. J Therm Anal Calorim. 2019;135(1):697–711.

    CAS  Google Scholar 

  6. Zendehboudi A, Tatar A. Utilization of the RBF network to model the nucleate pool boiling heat transfer properties of refrigerant–oil mixtures with nanoparticles. J Mol Liq. 2017;247:304–12.

    CAS  Google Scholar 

  7. Park K-J, Jung D. Boiling heat transfer enhancement with carbon nanotubes for refrigerants used in building air-conditioning. Energy Build. 2007;39(9):1061–4.

    Google Scholar 

  8. Trisaksri V, Wongwises S. Nucleate pool boiling heat transfer of TiO2–R141b nanofluids. Int J Heat Mass Transf. 2009;52(5):1582–8.

    CAS  Google Scholar 

  9. Jahanbakhshi A, Nadooshan AA, Bayareh M. Magnetic field effects on natural convection flow of a non-Newtonian fluid in an L-shaped enclosure. J Therm Anal Calorim. 2018;133(3):1407–16.

    CAS  Google Scholar 

  10. Jiang W, Ding G, Peng H, Gao Y, Wang K. Experimental and model research on nanorefrigerant thermal conductivity. HVAC&R Res. 2009;15(3):651–69.

    Google Scholar 

  11. Peng H, Ding G, Hu H. Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp Therm Fluid Sci. 2011;35(6):960–70.

    CAS  Google Scholar 

  12. Wang R, Hao B, Xie G, Li H, editors. A refrigerating system using HFC134a and mineral lubricant appended with n-TiO2 (R) as working fluids. In: Proceedings of the 4th international symposium on HAVC. Tsinghua University Press, Beijing, China; 2003.

  13. Wang K, Shiromoto K, Mizogami T, editors. Experiment study on the effect of nano-scale particle on the condensation process. In: Proceedings of the 22nd international congress of refrigeration, Beijing, China, Paper no; 2007.

  14. Bi S-S, Shi L, Zhang L-L. Application of nanoparticles in domestic refrigerators. Appl Therm Eng. 2008;28(14):1834–43.

    CAS  Google Scholar 

  15. Chol S. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ Fed. 1995;231:99–106.

    Google Scholar 

  16. Zarei M, Keshavarz P, Zerafat M. Dynamic viscosity of triethylene glycol–water–CuO nanofluids as a gas dehydration desiccant. J Nanofluids. 2017;6(3):395–402.

    Google Scholar 

  17. Zarei M, Gholizadeh F, Sabbaghi S, Keshavarz P. Estimation of CO2 mass transfer rate into various types of nanofluids in hollow fiber membrane and packed bed column using adaptive neuro-fuzzy inference system. Int Commun Heat Mass Transf. 2018;96:90–7.

    CAS  Google Scholar 

  18. Hashemi M, Noie SH. Study of flow boiling heat transfer characteristics of critical heat flux using carbon nanotubes and water nanofluid. J Therm Anal Calorim. 2017;130(3):2199–209.

    CAS  Google Scholar 

  19. Bayareh M, Kianfar A, Kasaeipoor A. Mixed convection heat transfer of water-alumina nanofluid in an inclined and baffled c-shaped enclosure. J Heat Mass Transf Res. 2018;5(2):129–38.

    Google Scholar 

  20. Sepyani M, Shateri A, Bayareh M. Investigating the mixed convection heat transfer of a nanofluid in a square chamber with a rotating blade. J Therm Anal Calorim. 2019;135(1):609–23.

    CAS  Google Scholar 

  21. Shirazi M, Shateri A, Bayareh M. Numerical investigation of mixed convection heat transfer of a nanofluid in a circular enclosure with a rotating inner cylinder. J Therm Anal Calorim. 2018;133(2):1061–73.

    CAS  Google Scholar 

  22. Das SK, Putra N, Roetzel W. Pool boiling characteristics of nano-fluids. Int J Heat Mass Transf. 2003;46(5):851–62.

    CAS  Google Scholar 

  23. Das SK, Putra N, Roetzel W. Pool boiling of nano-fluids on horizontal narrow tubes. Int J Multiph Flow. 2003;29(8):1237–47.

    CAS  Google Scholar 

  24. Bang IC, Chang SH. Boiling heat transfer performance and phenomena of Al2O3–water nano-fluids from a plain surface in a pool. Int J Heat Mass Transf. 2005;48(12):2407–19.

    CAS  Google Scholar 

  25. Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res. 2005;7(2):265–74.

    CAS  Google Scholar 

  26. Peng H, Ding G, Hu H, Jiang W. Effect of nanoparticle size on nucleate pool boiling heat transfer of refrigerant/oil mixture with nanoparticles. Int J Heat Mass Transf. 2011;54(9):1839–50.

    CAS  Google Scholar 

  27. Narayan GP, Anoop K, Sateesh G, Das SK. Effect of surface orientation on pool boiling heat transfer of nanoparticle suspensions. Int J Multiph Flow. 2008;34(2):145–60.

    CAS  Google Scholar 

  28. Alawi OA, Sidik NAC. Applications of nanorefrigerant and nanolubricants in refrigeration, air-conditioning and heat pump systems: a review. Int Commun Heat Mass Transf. 2015;68:91–7.

    CAS  Google Scholar 

  29. Redhwan A, Azmi W, Sharif M, Mamat R. Development of nanorefrigerants for various types of refrigerant based: a comprehensive review on performance. Int Commun Heat Mass Transf. 2016;76:285–93.

    CAS  Google Scholar 

  30. Kedzierski MA, Gong M. Effect of CuO nanolubricant on R134a pool boiling heat transfer. Int J Refrig. 2009;32(5):791–9.

    CAS  Google Scholar 

  31. Peng H, Ding G, Hu H, Jiang W, Zhuang D, Wang K. Nucleate pool boiling heat transfer characteristics of refrigerant/oil mixture with diamond nanoparticles. Int J Refrig. 2010;33(2):347–58.

    CAS  Google Scholar 

  32. Park K-J, Jung D. Enhancement of nucleate boiling heat transfer using carbon nanotubes. Int J Heat Mass Transf. 2007;50(21):4499–502.

    CAS  Google Scholar 

  33. Peng H, Ding G, Hu H, Jiang W. Influence of carbon nanotubes on nucleate pool boiling heat transfer characteristics of refrigerant–oil mixture. Int J Therm Sci. 2010;49(12):2428–38.

    CAS  Google Scholar 

  34. Henderson K, Park Y-G, Liu L, Jacobi AM. Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf. 2010;53(5):944–51.

    CAS  Google Scholar 

  35. Sun B, Yang D. Experimental study on the heat transfer characteristics of nanorefrigerants in an internal thread copper tube. Int J Heat Mass Transf. 2013;64:559–66.

    CAS  Google Scholar 

  36. Tang X, Zhao Y-H, Diao Y-H. Experimental investigation of the nucleate pool boiling heat transfer characteristics of δ-Al2O3–R141b nanofluids on a horizontal plate. Exp Therm Fluid Sci. 2014;52:88–96.

    CAS  Google Scholar 

  37. Celen A, Çebi A, Aktas M, Mahian O, Dalkilic AS, Wongwises S. A review of nanorefrigerants: flow characteristics and applications. Int J Refrig. 2014;44:125–40.

    CAS  Google Scholar 

  38. Hagan MT, Demuth HB, Beale MH. Neural network design. Boston: PWS Pub. Co; 1996. p. 3632.

    Google Scholar 

  39. Ansari H, Zarei M, Sabbaghi S, Keshavarz P. A new comprehensive model for relative viscosity of various nanofluids using feed-forward back-propagation MLP neural networks. Int Commun Heat Mass Transf. 2018;91:158–64.

    CAS  Google Scholar 

  40. Hekayati J, Rahimpour MR. Estimation of the saturation pressure of pure ionic liquids using MLP artificial neural networks and the revised isofugacity criterion. J Mol Liq. 2017;230:85–95.

    CAS  Google Scholar 

  41. Esfe MH, Saedodin S, Sina N, Afrand M, Rostami S. Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int Commun Heat Mass Transf. 2015;68:50–7.

    Google Scholar 

  42. Chouai A, Laugier S, Richon D. Modeling of thermodynamic properties using neural networks: application to refrigerants. Fluid Phase Equilib. 2002;199(1):53–62.

    CAS  Google Scholar 

  43. Laugier S, Richon D. Use of artificial neural networks for calculating derived thermodynamic quantities from volumetric property data. Fluid Phase Equilib. 2003;210(2):247–55.

    CAS  Google Scholar 

  44. Sözen A, Özalp M, Arcaklioğlu E. Calculation for the thermodynamic properties of an alternative refrigerant (R508b) using artificial neural network. Appl Therm Eng. 2007;27(2):551–9.

    Google Scholar 

  45. Mohebbi A, Taheri M, Soltani A. A neural network for predicting saturated liquid density using genetic algorithm for pure and mixed refrigerants. Int J Refrig. 2008;31(8):1317–27.

    CAS  Google Scholar 

  46. Wang W-J, Zhao L-X, Zhang C-L. Generalized neural network correlation for flow boiling heat transfer of R22 and its alternative refrigerants inside horizontal smooth tubes. Int J Heat Mass Transf. 2006;49(15):2458–65.

    CAS  Google Scholar 

  47. Balcilar M, Dalkilic A, Suriyawong A, Yiamsawas T, Wongwises S. Investigation of pool boiling of nanofluids using artificial neural networks and correlation development techniques. Int Commun Heat Mass Transf. 2012;39(3):424–31.

    CAS  Google Scholar 

  48. Esfe MH, Ahangar MRH, Rejvani M, Toghraie D, Hajmohammad MH. Designing an artificial neural network to predict dynamic viscosity of aqueous nanofluid of TiO2 using experimental data. Int Commun Heat Mass Transf. 2016;75:192–6.

    Google Scholar 

  49. Moghadassi A, Parvizian F, Hosseini S. A new approach based on artificial neural networks for prediction of high pressure vapor–liquid equilibrium. Aust J Basic Appl Sci. 2009;3(3):1851–62.

    CAS  Google Scholar 

  50. Heidari E, Sobati MA, Movahedirad S. Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemom Intell Lab Syst. 2016;155:73–85.

    CAS  Google Scholar 

  51. Eslamloueyan R, Khademi MH, Mazinani S. Using a multilayer perceptron network for thermal conductivity prediction of aqueous electrolyte solutions. Ind Eng Chem Res. 2011;50(7):4050–6.

    CAS  Google Scholar 

  52. Hamzehie M, Fattahi M, Najibi H, Van der Bruggen B, Mazinani S. Application of artificial neural networks for estimation of solubility of acid gases (H2S and CO2) in 32 commonly ionic liquid and amine solutions. J Nat Gas Sci Eng. 2015;24:106–14.

    CAS  Google Scholar 

  53. Nabipour M, Keshavarz P. Modeling surface tension of pure refrigerants using feed-forward back-propagation neural networks. Int J Refrig. 2017;75:217–27.

    CAS  Google Scholar 

  54. Nabipour M. Prediction of surface tension of binary refrigerant mixtures using artificial neural networks. Fluid Phase Equilib. 2018;456:151–60.

    CAS  Google Scholar 

  55. Gholizadeh F, Sabzi F. Prediction of CO2 sorption in poly (ionic liquid) s using ANN-GC and ANFIS-GC models. Int J Greenh Gas Control. 2017;63:95–106.

    CAS  Google Scholar 

  56. Hekayati J, Rahimpour MR. Estimation of the saturation pressure of pure ionic liquids using MLP artificial neural networks and the revised isofugacity criterion. J Mol Liquids. 2017;230:85–95.

    CAS  Google Scholar 

  57. Fatehi M-R, Raeissi S, Mowla D. Estimation of viscosities of pure ionic liquids using an artificial neural network based on only structural characteristics. J Mol Liq. 2017;227:309–17.

    CAS  Google Scholar 

  58. Haykin S, Network N. A comprehensive foundation. Neural Netw. 2004;2004(2):41.

    Google Scholar 

  59. Beale MH, Hagan MT, Demuth HB. Neural network toolbox™ user’s guide. Natick: The MathWorks, Inc.; 2012.

    Google Scholar 

  60. Lashkarbolooki M, Shafipour ZS, Hezave AZ. Trainable cascade-forward back-propagation network modeling of spearmint oil extraction in a packed bed using SC-CO2. J Supercrit Fluids. 2013;73:108–15.

    CAS  Google Scholar 

  61. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q Appl Math. 1944;2(2):164–8.

    Google Scholar 

  62. Rezakazemi M, Razavi S, Mohammadi T, Nazari AG. Simulation and determination of optimum conditions of pervaporative dehydration of isopropanol process using synthesized PVA–APTEOS/TEOS nanocomposite membranes by means of expert systems. J Membr Sci. 2011;379(1):224–32.

    CAS  Google Scholar 

  63. Shabanzadeh P, Yusof R, Shameli K. Artificial neural network for modeling the size of silver nanoparticles’ prepared in montmorillonite/starch bionanocomposites. J Ind Eng Chem. 2015;24:42–50.

    CAS  Google Scholar 

  64. Vatankhah E, Semnani D, Prabhakaran MP, Tadayon M, Razavi S, Ramakrishna S. Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds. Acta Biomater. 2014;10(2):709–21.

    CAS  PubMed  Google Scholar 

  65. Garson DG. Interpreting neural network connection weights. Al Expert. 1991;6:46.

    Google Scholar 

  66. Goh A. Back-propagation neural networks for modeling complex systems. Artif Intell Eng. 1995;9(3):143–51.

    Google Scholar 

  67. Rohsenow WM. A method of correlating heat transfer data for surface boiling of liquids. Cambridge: MIT Division of Industrial Cooporation; 1951.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Keshavarz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarei, M.J., Ansari, H.R., Keshavarz, P. et al. Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim 139, 3757–3768 (2020). https://doi.org/10.1007/s10973-019-08746-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08746-z

Keywords

Navigation