Skip to main content
Log in

Investigation of heat transfer characteristics in the developing and the developed flow of nanofluid inside a tube with different entrances in the transition regime

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, we studied heat transfer characteristics in the developing and the developed flow of nanofluid inside a tube with different entrances in the transition regime. A range of Reynolds numbers from Re = 500 to 13,000 was stimulated to examine flow characteristics in the tube. Effect of entrance, diameter of nanoparticles, nanoparticle type, Reynolds number and concentration of nanoparticles on onset of transition were studied. The results show that heat transfer coefficient and Nusselt number of base fluid and the nanofluid increase with increasing Reynolds number. Also, convective heat transfer coefficient of nanofluid increases by increasing Reynolds number, and the rate of increase in heat transfer coefficient varies depending on diameter, volume fraction and type of nanoparticles. Furthermore, the results show that local Nusselt number and local convective heat transfer coefficient slightly decrease with increasing particle diameter at constant volume fraction of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Fung YC. Biomechanics—motion, flow, stress and growth. New York (USA): Springer; 1990. p. 569.

    Google Scholar 

  2. Manglik RM, Bergles AE. Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part 1—laminar flows. J Heat Transf. 1993;115:881–9.

    Article  CAS  Google Scholar 

  3. Garcia A, Vicente PG, Viedma A. Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different Prandtl numbers. Int J Heat Mass Transf. 2005;48:4640–51.

    Article  CAS  Google Scholar 

  4. García A, Solana JP, Vicente PG, Viedma A. Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts. Int J Heat Mass Transf. 2007;50:3176–89.

    Article  Google Scholar 

  5. Tam LM, Ghajar AJ. Transitional heat transfer in plain horizontal tubes. Heat Transf Eng. 2006;27(5):23–38.

    Article  CAS  Google Scholar 

  6. Tong Chong D, Liu J, Yan J. Effects of duct inclination angle on thermal entrance region of laminar and transition mixed convection. Int J Heat Mass Transf. 2008;51:3953–62.

    Article  Google Scholar 

  7. Celata GP, Lorenzini M, Morini GL, Zummo G. Friction factor in micro pipe gas flow under laminar, transition and turbulent flow regime. Int J Heat Fluid Flow. 2009;30:814–22.

    Article  CAS  Google Scholar 

  8. Lorenzini M, Morini GL, Salvigni S. Laminar, transitional and turbulent friction factors for gas flows in smooth and rough micro tubes. Int J Therm Sci. 2010;49:248–55.

    Article  Google Scholar 

  9. Meyer JP, Olivier JA. Transitional flow inside enhanced tubes for fully developed and developing flow with different types of inlet disturbances: part II—heat transfer. Int J Heat Mass Transf. 2011;54:1598–607.

    Article  Google Scholar 

  10. Almohammadi H, Vatan SN, Esmaeilzadeh E, Motezaker A, Nokhosteen A. Experimental investigation of convective heat transfer and pressure drop of Al2O3/water nanofluid in laminar flow regime inside a circular tube. Int J Mech Aerosp Ind Mech Manuf Eng. 2012;6:1750–5.

    Google Scholar 

  11. Wang C, Gao P, Tan S, Wang Z. Forced convection heat transfer and flow characteristics in laminar to turbulent transition region in rectangular channel. Exp Therm Fluid Sci. 2013;44:490–7.

    Article  Google Scholar 

  12. Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A. Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci. 2013;44:483–9.

    Article  CAS  Google Scholar 

  13. Tam HK, Tam LM, Ghajar AJ. Effect of inlet geometries and heating on the entrance and fully-developed friction factors in the laminar and transition regions of a horizontal tube. Exp Therm Fluid Sci. 2013;44:680–96.

    Article  Google Scholar 

  14. Karimzadehkhouei M, Eren Yalcin S, Sendur K, Mengu MP, Kosar A. Pressure drop and heat transfer characteristics of nanofluids in horizontal microtubes under thermally developing flow conditions. Exp Therm Fluid Sci. 2015;67:37–47.

    Article  CAS  Google Scholar 

  15. Zeinali Heris S, Oghazian F, Khademi M, Saeedi E. Simulation of convective heat transfer and pressure drop in laminar flow of Al2O3/water and CuO/water nanofluids through square and triangular cross—sectional ducts. JREE. 2015;1:7–20.

    Google Scholar 

  16. Li Y, Seara JF, Du K, Pardinas AA, Latas LL, Jiang W. Experimental investigation on heat transfer and pressure drop of ZnO/Ethylene glycol-water nanofluids in transition flow. Appl Therm Eng. 2016;93:537–48.

    Article  CAS  Google Scholar 

  17. Ebrahimnia-Bajestan E, Niazmand H, Duangthongsuk W, Wongwises S. Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime. Int J Heat Mass Transf. 2011;54:4376–88.

    Article  CAS  Google Scholar 

  18. Pak BC, Cho YI. hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  19. Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf. 2000;43:3701–7.

    Article  CAS  Google Scholar 

  20. Garg J, Poudel B, Chiesa M, Gordon J, Ma J, Wang J. Enhanced thermal conductivity and viscosity of Copper nanoparticles in Ethylene glycol nanofluid. J Appl Phys. 2008;103:074301.

    Article  Google Scholar 

  21. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/Water nanofluid. Exp Therm Fluid Sci. 2010;34:210–6.

    Article  CAS  Google Scholar 

  22. Vajjha RS, Das DK. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int J Heat Mass Transf. 2009;52:4675–82.

    Article  CAS  Google Scholar 

  23. Sundar LS, Singh MK. Convective heat transfer and friction factor correlations of nanofluid in a tube and with inserts: a review. Renew Sustain Energy Rev. 2013;20:23–35.

    Article  Google Scholar 

  24. Meyer P, Liebenberg L, Olivier JA. Single-phase heat transfer and pressure drop of Water cooled inside horizontal smooth tubes in the transitional flow regime. In: 2010 14th International Heat Transfer Conference. 2010, pp 429–436.

  25. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:119–23.

    Article  Google Scholar 

  26. Mahian O, Kolsid L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nadal E, Rashidi S, Niazmand S, Wongwise S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:2019.

    Article  Google Scholar 

  27. Mahian O, Kolsid L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nadal E, Rashidi S, Niazmand S, Wongwise S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows—part II: applications. Phys Rep. 2019;791:1–59.

    Article  CAS  Google Scholar 

  28. Rezaei O, Akbari OA, Marzban A, Toghraie D, Pourfattah F, Mashayekhi R. The numerical investigation of heat transfer and pressure drop of turbulent flow in a triangular microchannel. Phys E. 2017;93:179–89.

    Article  CAS  Google Scholar 

  29. Pourfattah F, Motamedian M, Sheikhzadeh Gh, Toghraie D, Akbari OA. The numerical investigation of angle of attack of inclined rectangular rib on the turbulent heat transfer of Water–Al2O3 nanofluid in a tube. Int J Mech Sci. 2017;131–132:1106–16.

    Article  Google Scholar 

  30. Akbari OA, Karimipour A, Toghraie D, Safaei MR, Alipour Goodarzi MH, Dahari M. Investigation of Rib’s height effect on heat transfer and flow parameters of laminar water–Al2O3 nanofluid in a two dimensional Rib-microchannel. Appl Math Comp. 2016;290:135–53.

    Article  Google Scholar 

  31. Akbari OA, Toghraie D, Karimipour A. Numerical simulation of heat transfer and turbulent flow of Water nanofluids copper oxide in rectangular microchannel with semi attached rib. Adv Mech Eng. 2016;8:1–25.

    Article  CAS  Google Scholar 

  32. Rahmati AR, Akbari OA, Marzban Ali, Toghraie D, Karimi R, Pourfattah F. Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm Sci Eng Prog. 2018;5:263–77.

    Article  Google Scholar 

  33. Sarlak R, Yousefzadeh Sh, Akbari OA, Toghraie D, Sarlak S, Assadi F. The investigation of simultaneous heat transfer of water/Al2O3 nanofluid in a close enclosure by applying homogeneous magnetic field. Int J Mech Sci. 2017;133:674–88.

    Article  Google Scholar 

  34. Gholami MR, Akbari OA, Marzban A, Toghraie D, Ahmadi Sheikh Shabani GHR, Zarringhalam M. The effect of rib shape on the behavior of laminar flow of oil/MWCNT nanofluid in a rectangular microchannel. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6902-3.

    Article  Google Scholar 

  35. Toghraie D, Mahmoudi M, Akbari OA, Pourfattah F, Heydari M. The effect of using water/CuO nanofluid and L-shaped porous ribs on the performance evaluation criterion of microchannels. J Therm Anal Calorim. 2019;1:2–3. https://doi.org/10.1007/s10973-018-7254-3.

    Article  CAS  Google Scholar 

  36. Akbari OA, Afrouzi HH, Marzban A, Toghraie D, Malekzade H, Arabpour A. Investigation of volume fraction of nanoparticles effect and aspect ratio of the twisted tape in the tube. J Therm Anal Calorim. 2017;129(3):1911–22.

    Article  CAS  Google Scholar 

  37. Arabpour A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  38. Esfahani NN, Toghraie D, Afrand M. A new correlation for predicting the thermal conductivity of ZnO–Ag (50%–50%)/water hybrid nanofluid: an experimental study. Powder Technol. 2018;323:367–73.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Toghraie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, M., Toghraie, D. Investigation of heat transfer characteristics in the developing and the developed flow of nanofluid inside a tube with different entrances in the transition regime. J Therm Anal Calorim 139, 685–699 (2020). https://doi.org/10.1007/s10973-019-08380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08380-9

Keywords

Navigation