Skip to main content
Log in

Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A numerical investigation is carried out to assess the hydrothermal performance of a water-based hybrid nanofluid containing both Fe3O4 (magnetite) nanoparticles and carbon nanotubes (CNTs) in a heated tube in the presence of a constant non-uniform magnetic field. The magnetic field is created by three pairs of permanent magnets. The effects of Reynolds number, magnetite, and CNT volume concentrations as well as magnetic field strength are investigated. The acquired data for the case of without magnetic field confirmed higher values of heat transfer and pressure drop as a result of utilizing nanofluid compared with water. Additionally, it was found that the Nusselt number and pressure drop of the studied nanofluid samples increase significantly under the magnetic field. Moreover, the influence of magnetic field increases with an increase in the nanoparticle concentrations and magnetic field strength and decrease in the Reynolds number. The maximum increments of 109.31% and 25.02% in comparison with the case of without field were obtained in the average Nusselt number and pressure drop for hybrid nanofluid containing 0.9% magnetite and 1.35% CNT at Reynolds number of 500.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. ASME J Heat Transf. 1995;66(1995):99–105.

    Google Scholar 

  2. Shahsavar A, Rahimi Z, Bahiraei M. Optimization of irreversibility and thermal characteristics of a mini heat exchanger operated with a new hybrid nanofluid containing carbon nanotubes decorated with magnetic nanoparticles. Energy Convers Manag. 2017;150:37–47.

    Article  CAS  Google Scholar 

  3. Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH. Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng. 2018;128:134–40.

    Article  CAS  Google Scholar 

  4. Hosseinian A, Meghdadi Isfahani AH, Shirani E. Experimental investigation of surface vibration effects on increasing the stability and heat transfer coefficient of MWCNTs–water nanofluid in a flexible double pipe heat exchanger. Exp Therm Fluid Sci. 2018;90:275–85.

    Article  CAS  Google Scholar 

  5. Felicia LJ, Philip J. Magnetorheological properties of a magnetic nanofluid with dispersed carbon nanotubes. Phys Rev E. 2014;89:022310.

    Article  CAS  Google Scholar 

  6. Popplewell J, Al-Qenaie A, Charles SW, Moskowitz R, Raj K. Thermal conductivity measurements on ferrofluids. Colloid Polym Sci. 1982;260:333–8.

    Article  CAS  Google Scholar 

  7. Shahsavar A, Salimpour MR, Saghafian M, Shafii MB. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim Acta. 2015;617:102–10.

    Article  CAS  Google Scholar 

  8. Malvandi A, Heysiattalab S, Ganji DD. Effects of magnetic field strength and direction on anisotropic thermal conductivity of ferrofluids (magnetic nanofluids) at filmwise condensation over a vertical cylinder. Adv Powder Technol. 2016;27:1539–46.

    Article  CAS  Google Scholar 

  9. Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J Mol Liq. 2017;230:121–8.

    Article  CAS  Google Scholar 

  10. Shahsavar A, Khanmohammadi S, Karimipour A, Goodarzi M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: a new approach of GMDH type of neural network. Int J Heat Mass Transf. 2019;131:432–41.

    Article  CAS  Google Scholar 

  11. Esfe MH, Hajmohammad MH, Razi P, Ahangar MRA, Arani AAA. The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int Commun Heat Mass Transf. 2016;79:128–34.

    Article  CAS  Google Scholar 

  12. Amani M, Amani P, Kasaeian A, Mahian O, Wongwises S. Experimental study on viscosity of spinel-type manganese ferrite nanofluid in attendance of magnetic field. J Magn Magn Mater. 2017;428:457–63.

    Article  CAS  Google Scholar 

  13. Shahsavar A, Khanmohammadi S, Toghraie D, Salehipour H. Experimental investigation and develop ANNs by introducing the suitable architectures and training algorithms supported by sensitivity analysis: measure thermal conductivity and viscosity for liquid paraffin based nanofluid containing Al2O3 nanoparticles. J Mol Liq. 2019;276:850–60.

    Article  CAS  Google Scholar 

  14. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2018. https://doi.org/10.1016/j.physrep.2018.11.004.

    Article  Google Scholar 

  15. Mahian O, Kolsi L, Amani M, Estelle P, Ahmadi G, Kleinstreuer C, Marshall JS, Taylor RA, Abu-Nada E, Rashidi S, Niazmand H, Wongwises S, Hayat T, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part II: applications. Phys Rep. 2018;15:12. https://doi.org/10.1016/j.physrep.2018.11.003.

    Article  CAS  Google Scholar 

  16. Yarahmadi M, Moazami Goudarzi H, Shafii MB. Experimental investigation into laminar forced convective heat transfer of ferrofluids under constant and oscillating magnetic field with different magnetic field arrangements and oscillation modes. Exp Therm Fluid Sci. 2015;68:601–11.

    Article  CAS  Google Scholar 

  17. Asfer M, Mehta B, Kumar A, Khandekar S, Panigrahi PK. Effect of magnetic field on laminar convective heat transfer characteristics of ferrofluid flowing through a circular stainless steel tube. Int J Heat Fluid Flow. 2016;59:74–86.

    Article  Google Scholar 

  18. Hatami N, Kazemnejad Banari A, Malekzadeh A, Pouranfard AR. The effect of magnetic field on nanofluids heat transfer through a uniformly heated horizontal tube. Phys Lett A. 2017;381:510–5.

    Article  CAS  Google Scholar 

  19. Shahsavar A, Ansarian R, Bahiraei M. Effect of line dipole magnetic field on entropy generation of Mn–Zn ferrite ferrofluid flowing through a minichannel using two-phase mixture model. Powder Technol. 2018;340:370–9.

    Article  CAS  Google Scholar 

  20. Mokhtari M, Hariri S, Gerdroodbary B, Yeganeh R. Effect of non-uniform magnetic field on heat transfer of swirling ferrofluid flow inside tube with twisted tapes. Chem Eng Process. 2017;117:70–9.

    Article  CAS  Google Scholar 

  21. Shahsavar A, Bahiraei M. Experimental investigation and modeling of thermal conductivity and viscosity for non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles. Powder Technol. 2017;318:441–50.

    Article  CAS  Google Scholar 

  22. Bahiraei M, Berahmand M, Shahsavar A. Irreversibility analysis for flow of a non-Newtonian hybrid nanofluid containing coated CNT/Fe3O4 nanoparticles in a minichannel heat exchanger. Appl Therm Eng. 2017;125:1083–93.

    Article  CAS  Google Scholar 

  23. Hemmat Esfe M, Alirezaie A, Rejvani M. An applicable study on the thermal conductivity of SWCNT–MgO hybrid nanofluid and price-performance analysis for energy management. Appl Therm Eng. 2017;111:1202–10.

    Article  CAS  Google Scholar 

  24. Baby TT, Sundara R. Surfactant free magnetic nanofluids based on core–shell type nanoparticle decorated multiwalled carbon nanotubes. J Appl Phys. 2011;110:064325.

    Article  CAS  Google Scholar 

  25. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83.

    Article  CAS  Google Scholar 

  26. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields. Exp Therm Fluid Sci. 2016;76:1–11.

    Article  CAS  Google Scholar 

  27. Harandi SS, Karimipour A, Afrand M, Akbari M, D’Orazio A. An experimental study on thermal conductivity of F-MWCNTs–Fe3O4/EG hybrid nanofluid: effects of temperature and concentration. Int Commun Heat Mass Transf. 2016;76:171–7.

    Article  CAS  Google Scholar 

  28. Berger P, Adelman NB, Beckman KJ, Campbell DJ, Ellis AB, Lisensky GC. Preparation and properties of an aqueous ferrofluid. J Chem Educ. 1999;76:943–8.

    Article  CAS  Google Scholar 

  29. Garg P, Alvarado JL, Marsh C, Carlson TA, Kessler DA, Annamalai K. An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids. Int J Heat Mass Transf. 2009;52:5090–101.

    Article  CAS  Google Scholar 

  30. Shahsavar A, Saghafian M, Salimpour MR, Shafii MB. Effect of temperature and concentration on thermal conductivity and viscosity of ferrofluid loaded with carbon nanotubes. Heat Mass Transf. 2015. https://doi.org/10.1007/s00231-015-1743-8.

    Article  Google Scholar 

  31. Strek T, Jopek H. Computer simulation of heat transfer through a ferrofluid. Phys Status Solidi (b). 2007;244:1027–37.

    Article  CAS  Google Scholar 

  32. Ganguly R, Sen S, Puri IK. Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater. 2004;271:63–73.

    Article  CAS  Google Scholar 

  33. Shahsavar A, Rahimi Z, Salehipour H. Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluid in a horizontal double-pipe minichannel heat exchanger. Heat Mass Transf. 2019. https://doi.org/10.1007/s00231-018-02558-x.

    Article  Google Scholar 

  34. Shah RK, London AL. Laminar flow forced convection in ducts, supplement 1 to advances in heat transfer. New York: Academic Press; 1978.

    Google Scholar 

  35. Shah RK, Bhatti MS. Laminar convective heat transfer in ducts. In: Kakac S, Shah RK, Aung W, editors. Handbook of single-phase convective heat transfer. New York: Wiley; 1987 (Chapter 3).

    Google Scholar 

  36. Azizian R, Doroodchi E, McKrell T, Buongiorno J, Hu LW, Moghtaderi B. Effect of magnetic field on laminar convective heat transfer of magnetite nanofluids. Int J Heat Mass Transf. 2014;68:94–109.

    Article  Google Scholar 

  37. Ghofrani A, Dibaei MH, Hakim Sima A, Shafii MB. Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field. Exp Therm Fluid Sci. 2013;49:193–200.

    Article  CAS  Google Scholar 

  38. Lienhard JH IV, Lienhard JH V. Heat transfer textbook. 2nd ed. Cambridge: Phlogiston Press; 2002.

    Google Scholar 

  39. Goharkhah M, Salarian A, Ashjaee M, Shahabadi M. Convective heat transfer characteristics of magnetite nanofluid under the influence of constant and alternating magnetic field. Powder Technol. 2015;274:258–67.

    Article  CAS  Google Scholar 

  40. Hong H, Wright B, Wensel J, Jin S, Ye XR, Roy W. Enhanced thermal conductivity by the magnetic field in heat transfer nanofluids containing carbon nanotube. Synth Metals. 2007;157:437–40.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The fifth author acknowledges the support provided by the ‘‘Research Chair Grant” National Science and Technology Development Agency (NSTDA) and King Mongkut’s University of Technology Thonburi through the ‘‘KMUTT 55th Anniversary Commemorative Fund”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minh Duc Tran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsarraf, J., Rahmani, R., Shahsavar, A. et al. Effect of magnetic field on laminar forced convective heat transfer of MWCNT–Fe3O4/water hybrid nanofluid in a heated tube. J Therm Anal Calorim 137, 1809–1825 (2019). https://doi.org/10.1007/s10973-019-08078-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08078-y

Keywords

Navigation