Skip to main content
Log in

Thermal and thermomechanical behavior of Moroccan Boufeggous variety date seeds

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, the physicochemical and thermomechanical characteristics of date seeds were examined during their pyrolysis under inert atmosphere from room temperature to 600 °C. We first discuss the thermal analysis characterization including TG/DTG, DTA, and DSC analyses and then the thermomechanical aspects related to fixed bed heat treatments, dimensional variations measurements, and SEM characterizations. TG allowed us to delimit the different zones of the pyrolysis of date seeds. Thus, an active pyrolysis zone between 120 and 410 °C is related hemicelluloses decomposition, followed by the degradation of cellulose. Lignin decomposes slowly throughout all the temperature range. All these degradations and reactions are suggested by the different peaks of the mass loss derivative. The DTA and DSC analyses indicate that the thermal stress of date seeds is exothermic. This exothermicity is related to the internal frictions representative of the thermomechanical behavior of the thermally stressed material. Dimensional variation measurements show that the material generally shrinks with slight increases in volume. These phenomena are well evidenced by the characterization by SEM indicating the development of a plastic phase by crazing and shear mainly in volume and the formation of cracks on surface. The development of this phase occurred mainly during the first warming of the material by DSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Harrak H, Boujnah MM. Valorisation technologique des dattes au Maroc, Institut National de Recherche Agronomique INRA, 2012.

  2. Directives stratégiques pour la filière phoénicicole, Direction de la Stratégie et des Statistiques, Département de l’Agriculture 2018. http://www.agriculture.gov.ma/pages/veille/directives-strategiques-pour-la-filiere-phoenicicole.

  3. Hossain MZ, Waly MI, Singh V, Sequeira V, Shafiur Rahman M. Chemical composition of date-pits and its potential for developing value-added product—a review. Pol J Food Nutr Sci. 2014;64(4):215–26.

    Article  CAS  Google Scholar 

  4. Besbes S, Blecker C, Deroanne C, Bahloul N, Lognay G, Derira N, Attia H. Date seed oil: phenolic, tocopherol and sterol profiles. J Food Lipids. 2004;11:251–65.

    Article  CAS  Google Scholar 

  5. AOAC (1995). Official methods of analysis of AOAC international, Virginia (16th ed., Vol. 2).

  6. AOAC. Official Methods of Analyses. Washington, DC: Association of Official Analytical Chemist; 1997.

    Google Scholar 

  7. AOAC. Official methods of analysis. 17th ed. Washington, DC: Associate of Official Analytical Chemist; 2000.

    Google Scholar 

  8. Kifani-Sahban F, Kifani A, Belkbir L, Zoulalian A, Arauso J, Cordero T. A physical approach in the understanding of the phenomena accompanying the thermal treatment of lignin. Thermochim Acta. 1997;298:199–204.

    Article  CAS  Google Scholar 

  9. Kifani A, Sahban F. Mécanique des Milieux Continus. Paris: Publibook; 2014.

    Google Scholar 

  10. Walter G. Kauman, Le matériau bois – propriétés technologie. Mise en œuvre, Association pour la recherche sur le bois en Lorraine; 1983.

  11. Khiari B, Abed I, Jeguirim M, Zagrouba F. Thermal conversion of date stones and palm stalks: experimental and kinetic study. In: Proceeding of the 11th international conference of environmental sciences and technology, Chania, Crete, Greece. 2009;B-448–B-455.

  12. Carrier M, Loppinet-Serani A, Denux D, Lasnier JM, Ham-Pichavant F, Cansell F, Aymonier C. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307.

    Article  CAS  Google Scholar 

  13. Shah MA, Khan MNS, Kumar V. Biomass residue characterization for their potential application as biofuels. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7560-9.

    Article  Google Scholar 

  14. Nakanishi M, Ogi T, Endo Y, Otaka M. Effect of carbonization temperature on composition of carbonized woody biomass. J Therm Anal Calorim. 2017;130(2):1117–23.

    Article  CAS  Google Scholar 

  15. Abed I, Paraschiv M, Loubar K, Zagrouba F, Tazerout M. Palm waste pyrolysis analysis. BioResources. 2012;7(1):1200–20.

    Google Scholar 

  16. Babiker ME, Rashid A, Aziz A, Heikal M, Yusup S, Abakar M. Pyrolysis characteristics of Phoenix dactylifera date palm seeds using thermo-gravimetric analysis (TG). Int J Environ Sci Dev. 2013;4(5):521–4.

    Article  Google Scholar 

  17. Cruz G, Santiago PA, Braz CEM, Seleghim P Jr, Crnkovic PM. Investigation into the physical–chemical properties of chemically pretreated sugarcane bagasse. J Therm Anal Calorim. 2018;132(2):1039–53.

    Article  CAS  Google Scholar 

  18. Antal MJ Jr. Chapter 4 Biomass pyrolysis: a review of the literature Part 2: lignocellulose pyrolysis. In: Duffie JA, Boer KW, editors. Advances in solar energy, vol. 3. New York: Plenum; 1984. p. 175–255.

    Google Scholar 

  19. Ronkart SN, Blecker CS, Deroanne C, Paquot M. Phénomène de la transition vitreuse appliquée aux glucides alimentaires amorphes à l'état de poudre. Biotechnol Agron Soc Environ. 2009;13(1):177–86.

    Google Scholar 

  20. Kifani-Sahban F. Etude des aspects physiques et physico-chimiques de la pyrolyse lente de l’eucalyptus et des principaux constituants du bois. Thèse de Doctorat d’Etat, Faculté des Sciences Rabat (1997).

  21. EL Moustaqim M, El Kaihal A, Men-La-Yakhaf S, Taibi M, Sebbahi S, El Hajjaji S, Kifani-Sahban F. Thermal and thermomechanical analysis of lignin. Sustain Chem Pharm. 2018;9:63–8.

    Article  Google Scholar 

  22. Roberts AF, Clough G. In: 9th International symposium on combustion 1963;158–166.

  23. Mc Kinney J.W. Paper trade journal 1964; 122 (4): 58.

  24. Sinha S, Jhalani A, Ravi MR, Ray A. Modelling of pyrolysis in wood: a review. SESI J. 2000;10:41–62.

    Google Scholar 

  25. Hemati M, El ghezal L, Laguerie C. Etude Expérimentale de la Pyrolyse de Sciure de Bois Dans un Lit Fluidisé de Sable Entre 630 et 940°C. Chem Eng J. 1989;42:B25–38.

    Article  CAS  Google Scholar 

  26. Aguiara L, Márquez-Montesinos F, Gonzalo A, Sánchez JL, Arauzo J. Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues. J Anal Appl Pyrol. 2008;83:124–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam El Marouani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Abbari, H., Bentahar, S., El Marouani, M. et al. Thermal and thermomechanical behavior of Moroccan Boufeggous variety date seeds. J Therm Anal Calorim 137, 1485–1492 (2019). https://doi.org/10.1007/s10973-019-08060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08060-8

Keywords

Navigation