Skip to main content
Log in

Evaluate the flammability of a PU foam with double-scale analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two-scale tests, microscale and bench scale, are conducted to analyze the flammability of a flexible polyurethane foam. Microscale tests include simultaneous thermal analysis coupled to Fourier transform infrared spectroscopy, and microscale combustion calorimeter (MCC). Evolved gas components, heat release rate per unit mass, total heat release, derived heat release capacity, and minimum ignition temperature are obtained. Bench scale tests are performed on cone calorimeter. Peak heat release rate per unit area, effective heat of combustion, minimum incident heat flux for ignition, and total heat release per unit area of different incident heat fluxes are obtained. FO-category of the PU foam is estimated by multiple discriminant function analysis based on the results of cone calorimeter test. The relationship between the two-scale tests is analyzed. The minimum ignition temperatures derived from multi heating rate MCC tests are used to predict the time to ignition and compared with the results from cone calorimeter tests. This PU foam is evaluated as a high fire hazard polymer having low heat release capacity, low ignition temperature, and short ignition time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

EHC:

Effective heat of combustion

h g :

Combustion heat

MCC:

Microscale combustion calorimeter

pHRR:

Maximum HRR per unit mass

PU:

Polyurethane

T onset :

Onset temperature

T pHRR :

Temperature at maximum HRR per unit mass

THR:

Total heat release

t ig :

Time to ignition

t pHRR :

Time to peak HRR

TRP:

Thermal response parameter

q r :

Incident heat flux

q min :

Minimum heat flux for ignition

q net :

Net heat flux

β :

Heating rate

h g :

The total heat of gasification per unit mass

κ :

Heat conductivity

ρ :

Density

η c :

Heat release capacity

References

  1. Torvi D, Weckman B. Guest editorial: special issue on polyurethane foam combustion. Fire Technol. 2014;50:633–4.

    Article  Google Scholar 

  2. Pitts WM. Applied heat flux distribution and time response effects on cone calorimeter characterization of a commercial flexible polyurethane foam. Fire Technol. 2014;50:635–72. https://doi.org/10.1007/s10694-011-0235-8.

    Article  Google Scholar 

  3. Fire Safe Europe-White paper, Dec 2014. www.firesafeeurope.eu.

  4. http://www.furnituretoday.com/article/545358-maine-first-nation-ban-flame-retardants-upholstered-furniture/.

  5. Checchin M, Cecchini C, Cellarosi B, Sam FO. Use of cone calorimeter for evaluating fire performances of polyurethane foams. Polym Degrad Stab. 1999;64:573–6.

    Article  CAS  Google Scholar 

  6. Hadden R, Alkatib A, Rein G, Torero JL. Radiant ignition of polyurethane foam: the effect of sample size. Fire Technol. 2014;50:673–91. https://doi.org/10.1007/s10694-012-0257-x.

    Article  Google Scholar 

  7. Ezinwa JU, Robson LD, Obach MR, Torv DA. Evaluating models for predicting full-scale fire behaviour of polyurethane foam using cone calorimeter data. Fire Technol. 2014;50:693–719. https://doi.org/10.1007/s10694-011-0239-4.

    Article  Google Scholar 

  8. Lefebvre J, Bastin B, Le Bras M, Duquesne S, Ritter C, Paleja R, Poutch F. Flame spread of flexible polyurethane foam: comprehensive study. Polym Test. 2004;23:281–90.

    Article  CAS  Google Scholar 

  9. Govmark Datasheet of Micro-scale Combustion Calorimeter (MCC2), the Govmark Organization, Inc.

  10. Standard Test Method for Determining Flammability Characteristics of Plastics and Other Solid Materials Using Microscale Combustion Calorimetry, ASTM D7309-13; 2013.

  11. Snegirev AY, Talalov VA, Stepanov VV, Harris JN. A new model to predict pyrolysis, ignition and burning of flammable materials in fire tests. Fire Saf J. 2013;59:132–50.

    Article  CAS  Google Scholar 

  12. Walters RN, Safronava N, Lyon RE. A microscale combustion calorimeter study of gas phase combustion of polymers. Combust Flame. 2015;162:855–63.

    Article  CAS  Google Scholar 

  13. Stoliarov SI, Crowley S, Walters RN, Lyon RE. Prediction of the burning rates of charring polymers. Combust Flame. 2010;157:2024–34.

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang Y, Cao Z, Fang Z. Synthesis and performance of three flame retardant additives containing diethyl phosphite/phenyl phosphonic moieties. Fire Saf J. 2013;61:185–92.

    Article  CAS  Google Scholar 

  15. Chen X, Zhuo J, Jiao C. Thermal degradation characteristics of flame retardant polylactide using TG-IR. Polym Degrad Stab. 2012;97:2143–7.

    Article  CAS  Google Scholar 

  16. Wu K, Zhang YK, Zhang K, Shen MM, Hu Y. Effect of microencapsulation on thermal properties and flammability performance of epoxy composite. J Anal Appl Pyrolysis. 2012;94:196–201.

    Article  CAS  Google Scholar 

  17. Jiang L, He JJ, Sun JH. Sample width and thickness effects on upward flame spread over PMMA surface. J Hazard Mater. 2018;342:114–20.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang L, Miller C, Gollner M, Sun JH. Sample width and thickness effects on horizontal flame spread over a thin PMMA surface. Proc Combust Inst. 2017;36(2):2987–94.

    Article  CAS  Google Scholar 

  19. ISO 5660-1, Reaction to fire tests- Heat release, smoke production and mass loss rate, Part 1: Heat release rate (cone calorimeter method); 2002.

  20. Oprea S. Effect of structure on the thermal stability of crosslinked poly (ester-urethane). Polimery. 2009;54(2):120–5.

    Article  CAS  Google Scholar 

  21. Zieleniewska M, Leszczyński MK, Szczepkowski L, et al. Development and applicational evaluation of the rigid polyurethane foam composites with egg shell waste. Polym Degrad Stab. 2016;132:78–86.

    Article  CAS  Google Scholar 

  22. Salasinska K, Borucka M, Leszczyńska M, et al. Analysis of flammability and smoke emission of rigid polyurethane foams modified with nanoparticles and halogen-free fire retardants. J Therm Anal Calorim. 2017;130(1):131–41.

    Article  CAS  Google Scholar 

  23. Jiang L, Zhang D, Li M, et al. Pyrolytic behavior of waste extruded polystyrene and rigid polyurethane by multi kinetics methods and Py-GC/MS. Fuel. 2018;222:11–20.

    Article  CAS  Google Scholar 

  24. He JJ, Jiang L, Sun JH, et al. Thermal degradation study of pure rigid polyurethane in oxidative and non-oxidative atmospheres. J Anal Appl Pyrolysis. 2016;120:269–83.

    Article  CAS  Google Scholar 

  25. Jiang L, Xiao HH, He JJ, et al. Application of genetic algorithm to pyrolysis of typical polymers. Fuel Process Technol. 2015;138:48–55.

    Article  CAS  Google Scholar 

  26. Xu Q, Jin C, Griffin GJ, Matala A, Hostikka S. A PMMA flammability analysis using the MCC effect of specimen mass. J Therm Anal Calorim. 2016;126(3):1831–40. https://doi.org/10.1007/s10973-016-5688-z.

    Article  CAS  Google Scholar 

  27. Xu Q, Jin C, Jiang Y. Compare the flammability of two extruded polystyrene foams with microscale combustion calorimeter and cone calorimeter tests. J Therm Anal Calorim. 2017;127(3):2359–66. https://doi.org/10.1007/s10973-016-5754-6.

    Article  CAS  Google Scholar 

  28. Xu Q, Jin C, Jiang Y. Analysis of the relationship between MCC and thermal analysis results in evaluating flammability of EPS foam. J Therm Anal Calorim. 2014;118(2):687–93. https://doi.org/10.1007/s10973-014-3736-0.

    Article  CAS  Google Scholar 

  29. Schartel B, Pawlowski KH, Lyon RE. Pyrolysis combustion flow calorimeter: a tool to assess flame retarded PC/ABS materials. Thermochim Acta. 2007;462:1–14.

    Article  CAS  Google Scholar 

  30. Principles and Practice of Microscale Combustion Calorimetry, DOT/FAA/TC-12/53; 2013.

  31. Lyon RE, Walters RN, Stoliarov SI. A new methodology for measuring flammability parameters of plastics. In: Proceedings of the 64th annual conference of the society of plastics engineers, May 7–11. Charlotte; 2006. p. 1626–30.

  32. Janssens ML. Improved method of analysis for the LIFT apparatus, Part I: ignition. In: Proceedings of 2nd fire and materials conf. interscience communications, London, England; 1993. p. 37–46.

  33. Hansen SH, Hovde PJ. Prediction of time to flashover in the ISO 9705 room corner test based on cone calorimeter test results. Fire Mater. 2002;26(2):77–86.

    Article  CAS  Google Scholar 

  34. Lyon RE. Heat release kinetics. Fire Mater. 2000;24:179–86.

    Article  CAS  Google Scholar 

  35. Tewarson A. Flammability Parameters of Materials: ignition, combustion, and fire propagation. J Fire Sci. 1994;12:329. https://doi.org/10.1177/073490419401200401.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the National Natural Science Foundation of China, No. 51776098, and supported by the Fundamental Research Funds for the Central Universities, no. 30918015101 and China-Slovak joint research project 8-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Jin, C., Majlingova, A. et al. Evaluate the flammability of a PU foam with double-scale analysis. J Therm Anal Calorim 135, 3329–3337 (2019). https://doi.org/10.1007/s10973-018-7494-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7494-2

Keywords

Navigation