Skip to main content
Log in

Effect of reactive and nonreactive surface modifications and compatibilizer use on mechanical and flame-retardant properties of linear low-density polyethylene filled with huntite and hydromagnesite mineral

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In the current study, huntite and hydromagnesite (HH) was used as flame-retardant additive in linear low-density polyethylene (LLDPE). The effect of HH amount on the flame-retardant and mechanical properties of the composites was investigated. The compatibilizer (ethylene butyl acrylate) use and the surface modifications with stearic acid and silane coupling agent were used in order to improve the mechanical properties of the composites. The mechanical properties of the composites were studied using tensile test and dynamic mechanical analysis. The fire-retardant properties of the composites were investigated using limiting oxygen index (LOI), mass loss calorimeter, vertical (UL 94 V) and horizontal (UL 94 HB) burning tests. According to the flammability test results, LOI value increased, horizontal burning rate reduced as the added amount of HH increased, whereas UL 94 V rating remained burn to clamp. According to the mechanical test results, the addition of HH reduced the tensile strength and elongation at break values and increased the elastic modulus and the β transition temperature of the LLDPE as the added amount increased. Only the compatibilizer use improved the flammability properties of the composites with improved tensile strength. Both stearic acid and silane modification merely increased the toughness of the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Morgan AB, Wilkie CA. The non-halogenated flame retardant handbook. London: Wiley; 2014.

    Book  Google Scholar 

  2. Weil ED, Levchik SV. Flame retardants for plastics and textiles: practical applications. Munich: Carl Hanser Verlag GmbH Co. KG; 2015.

    Book  Google Scholar 

  3. Weil ED, Levchik SV. Flame retardants in commercial use or development for polyolefins. J Fire Sci. 2008;26(1):5–43.

    Article  CAS  Google Scholar 

  4. Le Bras M. Fire retardancy of polymers: new applications of mineral fillers. London: Royal Society of Chemistry; 2005.

    Google Scholar 

  5. Hull TR, Witkowski A, Hollingbery L. Fire retardant action of mineral fillers. Polym Degrad Stab. 2011;96(8):1462–9.

    Article  CAS  Google Scholar 

  6. Liu L, Zhang H, Sun L, Kong Q, Zhang J. Flame-retardant effect of montmorillonite intercalation iron compounds in polypropylene/aluminum hydroxide composites. J Therm Anal Calorim. 2016;124:807–14.

    Article  CAS  Google Scholar 

  7. Zhou X, Ran S, Hu H, Fang Z. Improving flame-retardant efficiency by incorporation of fullerene in styrene–butadiene–styrene block copolymer/aluminum hydroxide composites. J Therm Anal Calorim. 2016;125:199–2014.

    Article  CAS  Google Scholar 

  8. Zheng Lu, Wu T, Kong Q, Zhang J, Liu H. Improving flame retardancy of PP/MH/RP composites through synergistic effect of organic CoAl-layered double hydroxide. J Therm Anal Calorim. 2017;129:1039–46.

    Article  CAS  Google Scholar 

  9. Zhang Z, Li M, Wu L, Zhang Y, Mai K. Preparation and crystallization of aluminum hydroxide-filled β-polypropylene composites. J Therm Anal Calorim. 2017;130:773–80.

    Article  CAS  Google Scholar 

  10. Hollingbery L, Hull T. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509(1):1–11.

    Article  CAS  Google Scholar 

  11. Hollingbery L, Hull TR. The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab. 2010;95(12):2213–25.

    Article  CAS  Google Scholar 

  12. Hollingbery L, Hull TR. The thermal decomposition of natural mixtures of huntite and hydromagnesite. Thermochim Acta. 2012;528:45–52.

    Article  CAS  Google Scholar 

  13. Hollingbery L, Hull TR. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym Degrad Stab. 2012;97(4):504–12.

    Article  CAS  Google Scholar 

  14. Atay HY, Celik E. Mechanical properties of flame-retardant huntite and hydromagnesite-reinforced polymer composites. Polym Plastic Technol Eng. 2013;52(2):182–8.

    Article  CAS  Google Scholar 

  15. Atay HY, Celik E. Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant. Polym Compos. 2010;31(10):1692–700.

    Article  CAS  Google Scholar 

  16. Morgan AB, Cogen JM, Opperman RS, Harris JD. The effectiveness of magnesium carbonate-based flame retardants for poly(ethylene-co-vinyl acetate) and poly(ethylene-co-ethyl acrylate). Fire Mater. 2007;31(6):387–410.

    Article  CAS  Google Scholar 

  17. Toure B, Cuesta JML, Gaudon P, Benhassaine A, Crespy A. Fire resistance and mechanical properties of a huntite/hydromagnesite/antimony trioxide/decabromodiphenyl oxide filled PP–PE copolymer. Polym Degrad Stab. 1996;53(3):371–9.

    Article  CAS  Google Scholar 

  18. Touré B, Lopez-Cuesta J, Benhassaine A, Crespy A. The combined action of huntite and hydromagnesite for reducing flammability of an ethylene–propylene copolymer. Int Polym Anal Charact. 1996;2(3):193–202.

    Article  Google Scholar 

  19. Kandola BK, Pornwannachai W. Enhancement of passive fire protection ability of inorganic fire retardants in vinyl ester resin using glass frit synergists. J Fire Sci. 2010;28(4):357–81.

    Article  CAS  Google Scholar 

  20. Savas LA, Deniz TK, Tayfun U, Dogan M. Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Polym Degrad Stab. 2017;135:121–9.

    Article  CAS  Google Scholar 

  21. Guler T, Tayfun U, Bayramli E, Dogan M. Effect of expandable graphite on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite&hydromagnesite mineral. Thermochim Acta. 2017;647:70–80.

    Article  CAS  Google Scholar 

  22. Haurie L, Fernandez AI, Velasco JI, Chimenos JM, Cuesta JML, Espiell F. Synthetic hydromagnesite as flame retardant. Evaluation of the flame behaviour in a polyethylene matrix. Polym Degrad Stab. 2006;91(5):989–94.

    Article  CAS  Google Scholar 

  23. Basfar A, Bae H. Influence of magnesium hydroxide and huntite hydromagnesite on mechanical properties of ethylene vinyl acetate compounds cross-linked by dicumyl peroxide and ionizing radiation. J Fire Sci. 2010;28(2):161–80.

    Article  CAS  Google Scholar 

  24. Seki Y, Sever K, Sarikanat M, Sakarya A, Elik E. Effect of huntite mineral on mechanical, thermal and morphological properties of polyester matrix. Compos Part B Eng. 2013;45(1):1534–40.

    Article  CAS  Google Scholar 

  25. Koga N, Yamane Y. Effect of mechanical grinding on the reaction pathway and kinetics of the thermal decomposition of hydromagnesite. J Therm Anal Calorim. 2008;93(3):963–71.

    Article  CAS  Google Scholar 

  26. Huang H, Tian M, Yang J, Li H, Liang W, Zhang L, Li X. Stearic acid surface modifying Mg(OH)2: mechanism and its effect on properties of ethylene vinyl acetate/Mg(OH)2 composites. J Appl Polym Sci. 2008;107(5):3325–31.

    Article  CAS  Google Scholar 

  27. Osman MA, Suter UW. Surface treatment of calcite with fatty acids: structure and properties of the organic monolayer. Chem Mater. 2002;14(10):4408–15.

    Article  CAS  Google Scholar 

  28. Liu X, Xu W, Peng X. Effects of stearic acid on the interface and performance of polypropylene/superfine down powder composites. Polym Compos. 2009;30(12):1854–63.

    Article  CAS  Google Scholar 

  29. Liu Y, Jia L. Analysis of estrogens in water by magnetic octadecylsilane particles extraction and sweeping micellar electrokinetic chromatography. Microchem J. 2008;89(1):72–6.

    Article  CAS  Google Scholar 

  30. Kwon S, Kim KJ, Kim H, Kundu PP, Kim TJ, Lee YK, Lee BH, Choe S. Tensile property and interfacial dewetting in the calcite filled HDPE, LDPE, and LLDPE composites. Polymer. 2002;43(25):6901–9.

    Article  CAS  Google Scholar 

  31. Guseva M, Gerasin V, Shklyaruk B. Tensile behavior of polyolefin composites: the effect of matrix parameters. J Appl Polym Sci. 2016;133(34):43819–30.

    Article  Google Scholar 

  32. Ponomareva NR, Goncharuk GP, Grigor’ev YA, Obolonkova ES, Serenko OA. Deformation behavior of composites based on low-density polyethylene and hollow glass spheres. Russ J Appl Chem. 2009;82(8):1472–8.

    Article  CAS  Google Scholar 

  33. Pinto UA, Visconte LLY, Gallo J, Nunes RCR. Flame retardancy in thermoplastic polyurethane elastomers (TPU) with mica and aluminum trihydrate (ATH). Polym Degrad Stab. 2000;69(3):257–60.

    Article  CAS  Google Scholar 

  34. Suihkonen R, Nevalainen K, Orell O, Honkanen M, Tang L, Zhang H, Zhang Z, Vuorinen J. Performance of epoxy filled with nano-and micro-sized magnesium hydroxide. J Mater Sci. 2012;47(3):1480–8.

    Article  CAS  Google Scholar 

  35. Kaully T, Siegmann A, Shacham D. Mechanical behavior of highly filled natural CaCO3 composites: effect of particle size distribution and interface interactions. Polym Compos. 2008;29(4):396–408.

    Article  CAS  Google Scholar 

  36. Móczó J, Pukánszky B. Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem. 2008;14(5):535–63.

    Article  Google Scholar 

  37. Lazzeri A, Zebarjad SM, Pracella M, Cavalier K, Rosa R. Filler toughening of plastics. Part 1—the effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer. 2005;46(3):827–44.

    Article  CAS  Google Scholar 

  38. Gonzalez J, Albano C, Ichazo M, Diaz B. Effects of coupling agents on mechanical and morphological behavior of the PP/HDPE blend with two different CaCO3. Eur Polym J. 2002;38(12):2465–75.

    Article  CAS  Google Scholar 

  39. Kontou E, Niaounakis M. Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer. 2006;47(4):1267–80.

    Article  CAS  Google Scholar 

  40. Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH. Effect of functionalized graphene on the physical properties of linear low density polyethylene nanocomposites. Polym Test. 2012;31(1):31–8.

    Article  CAS  Google Scholar 

  41. Hollingbery L, Hull T. The thermal decomposition of huntite and hydromagnesite—a review. Thermochim Acta. 2010;509(1):1–11.

    Article  CAS  Google Scholar 

  42. Hollingbery L, Hull T. The fire retardant behaviour of huntite and hydromagnesite—a review. Polym Degrad Stab. 2010;95(12):2213–25.

    Article  CAS  Google Scholar 

  43. Hollingbery L, Hull TR. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym Degrad Stab. 2012;97(4):504–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by Erciyes University Scientific Research Unit under Grant No. BAP-FCD-2015-5921.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Dogan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savas, L.A., Arslan, C., Hacioglu, F. et al. Effect of reactive and nonreactive surface modifications and compatibilizer use on mechanical and flame-retardant properties of linear low-density polyethylene filled with huntite and hydromagnesite mineral. J Therm Anal Calorim 134, 1657–1666 (2018). https://doi.org/10.1007/s10973-018-7378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7378-5

Keywords

Navigation