Skip to main content
Log in

Thermal behaviour of some biological active perchlorate complexes with a triazolopyrimidine derivative

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In order to modulate their biological activity in relation with microbial and mammalian cells, new compounds of type M(pmtp)(ClO4)2·nH2O (M: Co, Ni, Cu, Zn; pmtp: 5-phenyl-7-methyl-1,2,4-triazolo[1,5-a]pyrimidine) were synthesised and characterised by chemical analysis, FAB-MS, IR, UV–Vis–NIR, EPR spectroscopy, cyclic voltammetry and magnetic data at room temperature. The thermal behaviour of these derivatives was also investigated by TG–DSC/MS measurements to evidence the changes induced by heating and also the thermodynamics effects that accompany them. Processes as water elimination, perchlorate decomposition, fragmentation and oxidative degradation of the triazolopyrimidine species were observed during the thermal studies. The in vitro screening of the antimicrobial activity was performed against Gram positive (S. aureus, B. subtilis) and Gram negative (E. coli, K. pneumoniae, P. aeruginosa), both reference and clinical multidrug-resistant bacterial strains and Candida albicans fungal strain. The copper(II) complex was the most active against planktonic microbial cells, exhibiting minimum inhibitory concentration values in the range of 31–125 μg mL−1. Remarkably, all complexes showed an inhibitory activity against biofilm development on the inert substratum, showing a promising potential for the design of new efficient anti-biofilm strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ashour HM, Shaaban OG, Rizk OH, El-Ashmawy IM. Synthesis and biological evaluation of thieno [2′, 3′: 4, 5] pyrimido [1, 2-b][1, 2, 4] triazines and thieno [2, 3-d][1, 2, 4] triazolo [1, 5-a] pyrimidines as anti-inflammatory and analgesic agents. Eur J Med Chem. 2013;62:341–51.

    Article  CAS  PubMed  Google Scholar 

  2. Bhatt JD, Chudasama CJ, Patel KD. Pyrazole clubbed triazolo [1, 5-a] pyrimidine hybrids as an anti-tubercular agents: Synthesis, in vitro screening and molecular docking study. Bioorg Med Chem. 2015;23:7711–6.

    Article  CAS  PubMed  Google Scholar 

  3. Kumar A, Paliwal D, Saini D, Thakur A, Aggarwal S, Kaushik D. A comprehensive review on synthetic approach for antimalarial agents. Eur J Med Chem. 2014;85:147–78.

    Article  CAS  PubMed  Google Scholar 

  4. Wang L, Tian Y, Chen W, Liu H, Zhan P, Li D, Liu H, De Clercq E, Pannecouque C, Liu X. Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach. Eur J Med Chem. 2014;85:293–303.

    Article  CAS  PubMed  Google Scholar 

  5. Sharma A, Kumar V, Khare R, Gupta GK, Beniwal V. Synthesis, docking study, and DNA photocleavage activity of some pyrimidinylhydrazones and 3-(quinolin-3-yl)-5, 7-dimethyl-1, 2, 4-triazolo [4, 3-a] pyrimidine derivatives. Med Chem Res. 2015;24:1830–41.

    Article  CAS  Google Scholar 

  6. Łakomska I, Fandzloch M. Application of 1,2,4-triazolo[1,5-a]pyrimidines for the design of coordination compounds with interesting structures and new biological properties. Coord Chem Rev. 2016;327:221–41.

    Article  CAS  Google Scholar 

  7. Caballero AB, Marin C, Ramirez-Macias I, Rodriguez-Dieguez A, Quirós M, Salas JM, Sanchez-Moreno M. Structural consequences of the introduction of 2,2′-bipyrimidine as auxiliary ligand in triazolopyrimidine-based transition metal complexes. In vitro antiparasitic activity. Polyhedron. 2012;33:137–44.

    Article  CAS  Google Scholar 

  8. Caballero AB, Rodríguez-Diéguez A, Quirós M, Salas JM, Huertas Ó, Ramírez-Macías I, Olmo F, Marín C, Chaves-Lemaur G, Gutierrez-Sánchez R, Sánchez-Moreno M. Triazolopyrimidine compounds containing first-row transition metals and their activity against the neglected infectious Chagas disease and leishmaniasis. Eur J Med Chem. 2014;85:526–34.

    Article  CAS  PubMed  Google Scholar 

  9. Łakomska I, Wojtczak A, Sitkowski J, Kozerski L, Szłyk E. Platinum(IV) complexes with purine anolgs. Studies of molecular structure and proliferative activity in vitro. Polyhedron. 2008;27:2765–70.

    Article  CAS  Google Scholar 

  10. Łakomska I, Kooijman H, Spek AL, Shen WZ, Reedijk J. Mono and dinuclear platinum(II) compounds with 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Structure, cytotoxic activity and reaction with 50-GMP. Dalton Trans. 2009;48:10736–41.

    Article  CAS  Google Scholar 

  11. Łakomska I, Babinska M, Wojtczak A, Sitkowski J. Synthesis, characterization and in vitro cytotoxicity of three typesof platinum(II) complexes containing 5,7-diethyl-1,2,4-triazolo[1,5-a]pyrimidine. Inorg Chim Acta. 2016;453:516–21.

    Article  CAS  Google Scholar 

  12. Łakomska I, Hoffmann K, Topolski A, Kloskowski T, Drewa T. Spectroscopic, kinetic and cytotoxic in vitro study of hexafluoroglutarate platinum(II) complex with 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Inorg Chim Acta. 2012;387:455–9.

    Article  CAS  Google Scholar 

  13. Łakomska I, Fandzloch M, Muzioł T, Sitkowski J, Wietrzyk J. Structure-cytotoxicity relationship for different types of mononuclear platinum(II) complexes with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine. J Inorg Biochem. 2012;115:100–5.

    Article  CAS  PubMed  Google Scholar 

  14. Hoffmann K, Łakomska I, Wiśniewska J, Kaczmarek-Kędziera A, Wietrzyk J. Acetate platinum(II) compound with 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine that overcomes cisplatin resistance: structural characterization, in vitro cytotoxicity, and kinetic studies. J Coord Chem. 2015;68:3193–208.

    Article  CAS  Google Scholar 

  15. Łakomska I, Hoffmann K, Wojtczak A, Sitkowski J, Maj E, Wietrzyk J. Cytotoxic malonate platinum(II) complexes with 1,2,4-triazolo[1,5-a] pyrimidine derivatives: structural characterization and mechanism of the suppression of tumor cell growth. J Inorg Biochem. 2014;141:188–97.

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann K, Wiśniewska J, Wojtczak A, Sitkowskic J, Denslow A, Wietrzyk J, Jakubowski M, Łakomska I. Rational design of dicarboxylatoplatinum(II) complexes with purine mimetic ligands as novel anticancer agents. J Inorg Biochem. 2017;172:34–45.

    Article  CAS  PubMed  Google Scholar 

  17. Łakomska I, Fandzloch M, Muzioł T, Lis T, Jezierska J. Synthesis, characterization and antitumor properties of two highly cytotoxic ruthenium(III) complexes with bulky triazolopyrimidine ligands. Dalton Trans. 2013;42:6219–26.

    Article  CAS  PubMed  Google Scholar 

  18. Girasolo MA, Attanzio A, Sabatino P, Tesoriere L, Rubino S, Stocco G. Organotin(IV) derivatives with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidine and their cytotoxic activities: the importance of being conformers. Inorg Chim Acta. 2014;423:168–76.

    Article  CAS  Google Scholar 

  19. Romero MA, Salas JM, Quirós M. Cobalt(II) complexes of 5,7-dimethyl[1,2,4]-triazolo-[1,5-a]-pyrimidine. Spectroscopic characterization, XRD study and antimicrobial activity. Transit Met Chem. 1993;18:595–8.

    Article  CAS  Google Scholar 

  20. Girasolo MA, Schillaci D, Di Salvo C, Barone G, Silvestri A, Ruisi G. Synthesis, spectroscopic characterization and in vitro antimicrobial activity of diorganotin(IV) dichloride adducts with [1,2,4]triazolo-[1,5-a]pyrimidine and 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine. J Organomet Chem. 2006;691:693–701.

    Article  CAS  Google Scholar 

  21. Girasolo MA, Canfora L, Sabatino P, Schillaci D, Foresti E, Rubino S, Ruisi G, Stocco G. Synthesis, characterization, crystal structures and in vitro antistaphylococcal activity of organotin(IV) derivatives with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidine. J Inorg Biochem. 2012;106:156–63.

    Article  CAS  PubMed  Google Scholar 

  22. Olar R, Calu L, Badea M, Chifiriuc MC, Bleotu C, Velescu B, Stoica O, Ionita G, Stanica N, Silvestro L, Dulea C, Uivarosi V. Thermal behaviour of some biologically active species based on complexes with a triazolopyrimidine pharmacophore. J Therm Anal Calorim. 2017;127:685–96.

    Article  CAS  Google Scholar 

  23. Calu L, Badea M, Cerc Korošec R, Bukovec P, Daniliuc C-G, Chifiriuc MC, Măruţescu L, Ciulică C, Serban G, Olar R. Thermal behavior of some novel biologically active complexes with a triazolopyrimidine pharmacophore. J Therm Anal Calorim. 2017;127:697–708.

    Article  CAS  Google Scholar 

  24. Măruţescu L, Calu L, Chifiriuc MC, Bleotu C, Daniliuc C-G, Fălcescu D, Kamerzan CM, Badea M, Olar R. Synthesis, physico-chemical characterization, crystal structure and influence on microbial and tumor cells of some Co(II) complexes with 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine. Molecules. 2017;22:1233–52.

    Article  CAS  Google Scholar 

  25. Hathaway BJ. Oxyanions. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. New York: Pergamon Press; 1987.

    Google Scholar 

  26. Geary WJ. The use of conductivity measurements in organic solvents for the characterisation of coordination compounds. Coord Chem Rev. 1971;7:81–122.

    Article  CAS  Google Scholar 

  27. Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, 6th ed., part B. Applications in coordination, organometallic, and bioinorganic chemistry. New Jersey: Wiley; 2009.

    Google Scholar 

  28. Solomon EI, Lever ABP. Inorganic electronic structure and spectroscopy, vol. II, applications and case studies. New York: Wiley; 2006.

    Google Scholar 

  29. The König E, Effect Nephelauxetic. Calculation and accuracy of the interelectronic repulsion parameters I. Cubic high-spin d 2, d 3, d 7 and d 8 systems. Struct Bound. 1972;9:175–372.

    Google Scholar 

  30. Gispert JR. Coordination chemistry. Weinheim: Wiley; 2008.

    Google Scholar 

  31. Hathaway BJ. Copper. In: Wilkinson G, Gillard RD, McCleverty JA, editors. Comprehensive coordination chemistry. New York: Pergamon Press; 1987.

    Google Scholar 

  32. Hathaway BJ, Billing DE. The electronic properties and stereochemistry of mono-nuclear complexes of the copper(II) ion. Coord Chem Rev. 1970;5:143–207.

    Article  CAS  Google Scholar 

  33. Rybak-Akimova EV, Nazarenko AY, Chen L, Krieger PW, Herrera AM, Tarasov VV, Robinson PD. Synthesis, characterization, redox properties, and representative X-ray structures of four- and five-coordinate copper(II) complexes with polydentate aminopyridine ligands. Inorg Chim Acta. 2001;324:1–14.

    Article  CAS  Google Scholar 

  34. Yousef TA, Abu El-Reash GM, El-Gammal OA, Bedier RA. Co(II), Cu(II), Cd(II), Fe(III) and U(VI) complexes containing a NSNO donor ligand: synthesis, characterization, optical band gap, in vitro antimicrobial and DNA cleavage studies. J Mol Struct. 2012;1029:149–60.

    Article  CAS  Google Scholar 

  35. Zanello P. Inorganic electrochemistry: theory, practice and application. Cambridge: Royal Society of Chemistry; 2003.

    Google Scholar 

  36. Calu L, Badea M, Chifiriuc MC, Bleotu C, David G-I, Ioniţă G, Măruţescu L, Lazăr V, Stanică N, Soponaru I, Marinescu D, Olar R. Synthesis, spectral, thermal, magnetic and biological characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes with a Schiff base bearing a 1,2,4-triazole pharmacophore. J Therm Anal Calor. 2015;120:375–86.

    Article  CAS  Google Scholar 

  37. Olar R, Badea M, Ferbinţeanu M, Stănică N, Alan I. Spectral, magnetic and thermal characterization of new Ni(II), Cu(II), Zn(II) and Cd(II) complexes with a bischelate Schiff base. J Therm Anal Calorim. 2017;127:709–19.

    Article  CAS  Google Scholar 

  38. Olar R, Vlaicu ID, Chifiriuc MC, Bleotu C, Stănică N, Vasile Scăeţeanu G, Silvestro L, Dulea C, Badea M. Synthesis, thermal analysis and biological characterisation of some new nickel(II) complexes with unsaturated carboxylates and heterocyclic N-donor ligands. J Therm Anal Calorim. 2017;127:731–41.

    Article  CAS  Google Scholar 

  39. Popa M, Hussien MD, Cirstea A, Lazar V, Bezirtzoglou E, Chifiriuc MC, Sakizlian M, Stavropoulou E, Bertesteanu S. Insights on metal based dental implants and their interaction with the surrounding tissues. Curr Top Med Chem. 2015;15:1614–21.

    Article  CAS  PubMed  Google Scholar 

  40. Bertesteanu SVG, Popescu CR, Grigore R, Popescu B. Pharyngoesophageal junction neoplasia-therapeutic management. Chirurgia. 2012;107:33–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank for magnetic measurements at room temperature to researcher Nicolae Stanică, from “Ilie Murgulescu” Physical Chemistry Institute of Romanian Academy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Olar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badea, M., Calu, L., Korošin, N.Č. et al. Thermal behaviour of some biological active perchlorate complexes with a triazolopyrimidine derivative. J Therm Anal Calorim 134, 665–677 (2018). https://doi.org/10.1007/s10973-018-7134-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7134-x

Keywords

Navigation