Skip to main content
Log in

Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this research, nanofluid heat transfer enhancement in a pipe by means of twisted tape with alternate axis is presented. Finite volume method is selected as simulation tool. Influences of revolution angle and Reynolds number on nanofluid hydrothermal treatment have been demonstrated. Suitable formulas for Nusselt number and Darcy factor are provided. Results prove that temperature gradient augments with enhance of revolution angle because of increase in secondary flow but pressure loss augments with rise of revolution angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\( D \) :

Pipe diameter (mm)

\( f \) :

Darcy friction factor

\( L \) :

Length of pipe (mm)

\( b \) :

Height of the twisted (mm)

\( Nu \) :

Nusselt number

\( t \) :

Thickness of the fin (mm)

Pr :

Prandtl number

\( P \) :

Pressure (Pa)

\( p \) :

Twisted pitch length

\( T \) :

Fluid temperature (K)

Re :

Reynolds number

\( \alpha \) :

Thermal diffusivity (m2 s−1)

\( \mu \) :

Dynamic viscosity of nanofluid (Pa s)

\( \beta \) :

Revolution angle

\( \rho \) :

Density (kg m−3)

\( \phi \) :

Volume fraction of nanofluid

f:

Base fluid

s:

Particles

nf:

Nanofluid

References

  1. Zeeshan A, Majeed A, Ellahi R. Effect of magnetic dipole on viscous ferro-fluid past a stretching surface with thermal radiation. J Mol Liq. 2016;215:549–54.

    Article  CAS  Google Scholar 

  2. Brar LK, Singla G, Kaur N, Pandey OP. Thermal stability and structural properties of Ta nanopowder synthesized via simultaneous reduction of Ta2O5 by hydrogen and carbon. J Therm Anal Calorim. 2015;119(1):453–60.

    Article  CAS  Google Scholar 

  3. Akar S, Rashidi S, Esfahani JA. Second law of thermodynamic analysis for nanofluid turbulent flow around a rotating cylinder. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6907-y.

    Article  Google Scholar 

  4. Sheikholeslami M, Ellahi R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid. Int J Heat Mass Transf. 2015;89:799–808.

    Article  CAS  Google Scholar 

  5. Rashidi S, Mahian O, Languri EM. Applications of nanofluids in condensing and evaporating systems. J Therm Anal Calorim. 2017. https://doi.org/10.1007/s10973-017-6773-7.

    Article  Google Scholar 

  6. Sheikholeslami M, Shehzad SA. Thermal radiation of ferrofluid in existence of Lorentz forces considering variable viscosity. Int J Heat Mass Transf. 2017;109:82–92.

    Article  CAS  Google Scholar 

  7. Sheikholeslami M, Seyednezhad M. Simulation of nanofluid flow and natural convection in a porous media under the influence of electric field using CVFEM. Int J Heat Mass Transf. 2018;120:772–81.

    Article  CAS  Google Scholar 

  8. Sheikholeslami M, Rokni HB. Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal radiation. Int J Heat Mass Transf. 2018;118:823–31.

    Article  CAS  Google Scholar 

  9. Shirejini SZ, Rashidi S, Esfahani JA. Recovery of drop in heat transfer rate for a rotating system by nanofluids. J Mol Liq. 2016;220:961–9.

    Article  CAS  Google Scholar 

  10. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  11. Sheikholeslami M, Shamlooei M, Moradi R. Numerical simulation for heat transfer intensification of nanofluid in a permeable curved enclosure considering shape effect of Fe3O4 nanoparticles. Chem Eng Process. 2018;124:71–82.

    Article  CAS  Google Scholar 

  12. Rashidi S, MoghadasZade N, AbolfazliEsfahani J. Thermo-fluid performance and entropy generation analysis for a new eccentric helical screw tape insert in a 3D tube. Chem Eng Process. 2017;117:27–37.

    Article  CAS  Google Scholar 

  13. Sheremet MA, Oztop HF, Pop I. MHD natural convection in an inclined wavy cavity with corner heater filled with a nanofluid. J Magn Magn Mater. 2016;416:37–47.

    Article  CAS  Google Scholar 

  14. Zade NM, Akar S, Rashidi S, Esfahani JA. Thermo-hydraulic analysis for a novel eccentric helical screw tape insert in a three dimensional tube. Appl Therm Eng. 2017;124:413–21.

    Article  Google Scholar 

  15. Sheikholeslami M, Shehzad SA. Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. Int J Heat Mass Transf. 2017;106:1261–9.

    Article  CAS  Google Scholar 

  16. Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    Article  CAS  Google Scholar 

  17. Sheikholeslami M, Ganji DD, Javed MY, Ellahi R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model. J Magn Magn Mater. 2015;374:36–43.

    Article  CAS  Google Scholar 

  18. Sheikholeslami M. CuO–water nanofluid flow due to magnetic field inside a porous media considering Brownian motion. J Mol Liq. 2018;249:921–9.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Shehzad SA. Simulation of water based nanofluid convective flow inside a porous enclosure via non-equilibrium model. Int J Heat Mass Transf. 2018;120:1200–12.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M. Numerical investigation for CuO–H2O nanofluid flow in a porous channel with magnetic field using mesoscopic method. J Mol Liq. 2018;249:739–46.

    Article  CAS  Google Scholar 

  21. Sheikholeslami M. Influence of magnetic field on nanofluid free convection in an open porous cavity by means of lattice Boltzmann method. J Mol Liq. 2017;234:364–74.

    Article  CAS  Google Scholar 

  22. Sheikholeslami M, Sadoughi MK. Simulation of CuO–water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  23. Sheikholeslami Kandelousi M. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel. Phys Lett A. 2014;378(45):3331–9.

    Article  CAS  Google Scholar 

  24. Kim D, Kwon Y, Cho Y, Li C, Cheong S, Hwang Y, Lee J, Hong D, Moona S. Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions. Curr Appl Phys. 2009;9:e119–23.

    Article  Google Scholar 

  25. Aminossadati SM, Raisi A, Ghasemi B. Effects of magnetic field on nanofluid forced convection in a partially heated micro channel. Int J Non Linear Mech. 2011;46:1373–82.

    Article  Google Scholar 

  26. Sheikholeslami M, Darzi M, Sadoughi MK. Heat transfer improvement and pressure drop during condensation of refrigerant-based nanofluid; an experimental procedure. Int J Heat Mass Transf. 2018;122:643–50.

  27. Sheikholeslami M, Ganji DD, Rashidi MM. Magnetic field effect on unsteady nanofluid flow and heat transfer using Buongiorno model. J Magn Magn Mater. 2016;416:164–73.

    Article  CAS  Google Scholar 

  28. Sheikholeslami M, Rashidi MM, Hayat T, Ganji DD. Free convection of magnetic nanofluid considering MFD viscosity effect. J Mol Liq. 2016;218:393–9.

    Article  CAS  Google Scholar 

  29. Sheikholeslami M, Rashidi MM, Ganji DD. Numerical investigation of magnetic nanofluid forced convective heat transfer in existence of variable magnetic field using two phase model. J Mol Liq. 2015;212:117–26.

    Article  CAS  Google Scholar 

  30. Sheikholeslami M, Vajravelu K, Rashidi MM. Forced convection heat transfer in a semi annulus under the influence of a variable magnetic field. Int J Heat Mass Transf. 2016;92:339–48.

    Article  CAS  Google Scholar 

  31. Sheikholeslami M, Rashidi MM, Ganji DD. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid. Comput Methods Appl Mech Eng. 2015;294:299–312.

    Article  Google Scholar 

  32. Sheikholeslami M, Rashidi MM. Ferrofluid heat transfer treatment in the presence of variable magnetic field. Eur Phys J Plus. 2015;130:115. https://doi.org/10.1140/epjp/i2015-15115-4.

    Article  CAS  Google Scholar 

  33. Sheikholeslami M, Rashidi MM. Effect of space dependent magnetic field on free convection of Fe3O4–water nanofluid. J Taiwan Inst Chem Eng. 2015;56:6–15.

    Article  CAS  Google Scholar 

  34. Sheikholeslami M, Ganji DD, Rashidi MM. Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation. J Taiwan Inst Chem Eng. 2015;47:6–17.

    Article  CAS  Google Scholar 

  35. Sheikholeslami M, Rokni HB. CVFEM for effect of Lorentz forces on nanofluid flow in a porous complex shaped enclosure by means of non-equilibrium model. J Mol Liq. 2018;254:446–62.

  36. Sheikholeslami M, Rokni HB. Magnetic nanofluid flow and convective heat transfer in a porous cavity considering Brownian motion effects. Phys Flu. 2018;30(1). https://doi.org/10.1063/1.5012517.

  37. Sheikholeslami M, Rokni HB. Simulation of nanofluid heat transfer in presence of magnetic field: a review. Int J Heat Mass Transf. 2017;115:1203–33.

Download references

Acknowledgements

This research was supported by the National Sciences Foundation of China (NSFC) (No. U1610109), Yingcai Project of CUMT (YC2017001), PAPD and UOW Vice-Chancellor’s Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhixiong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafaryar, M., Sheikholeslami, M., Li, Z. et al. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim 135, 305–323 (2019). https://doi.org/10.1007/s10973-018-7093-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7093-2

Keywords

Navigation