Skip to main content
Log in

A study of thermal decomposition of antigorite from dunite and lizardite from peridotite

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two varieties of serpentines, antigorite and lizardite originated from dunite and peridotite, respectively, were previously undergone heat treatment in the range from 396 to 1128 °C and then leached via an original approach to the acid processing of dehydrated serpentines. Because of unsaturated (weak) Si–O(Si) bonds existing in the serpentines structure, ortho- [SiO4]4−, di- [Si2O7]6− and other silicate units are easily leached from dehydrated serpentines in the form of soluble silicic acids along with magnesium compounds via this approach, whereas the more complex fragments largely comprised of metasilicate [(SiO3)2−]n chains remain in the unreacted mass The yields of silicic acids produced from heated serpentines are variable. The influence of thermal treatment on both the serpentinite samples was investigated by thermal, X-ray diffraction and chemical analyses. The data derived from the experimental studies allowed to reveal the distribution of primary ortho- [SiO4]4− and meta- [(SiO3)2−]n silicate units in the silicate layers inherent in these serpentine minerals and to understand its influence on the mechanism of their decomposition including the high-temperature phase transformations into forsterite Mg2SiO4 and enstatite Mg2Si2O6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Mafic rocks have around 50% or less (55–45%) silica and a lot of magnesium and iron, and ultramafic ones contain silica less than 45%, generally more than 18% MgO.

  2. Dunite is an ultramafic plutonic igneous rock. The mineral assemblage is greater than 90% olivine (Mg,Fe)2SiO4 with minor amounts of pyroxene(Mg,Fe)2Si2O6 and other minerals (chromite and pyrope).

  3. Peridotite is an ultramafic plutonic igneous rock consisting mostly of olivine (40–90%) and pyroxene.

  4. Pyroxenite is an ultramafic plutonic igneous rock that consists of dark minerals in the pyroxene group plus a little olivine (10%).

References

  1. Deer W, Howie R, Zussman J. Rock-forming minerals. Sheet silicates, vol. 3. London: Longman; 1962.

    Google Scholar 

  2. le Bas MJ, Streckeisen AL. The IUGS systematics of igneous rocks. J Geol Soc London. 1991;148(5):825–33. doi:10.1144/gsjgs.148.5.0825.

    Article  Google Scholar 

  3. Ball M, Taylor H. The dehydration of chrysotile in air and under hydrothermal conditions. Mineral Mag. 1963;33(261):467–82. doi:10.1180/minmag.1963.033.261.04.

    Article  Google Scholar 

  4. Brindley G, Hayami R. Kinetics and mechanisms of dehydration and recrystallization of serpentine–I. Clays Clay Miner. 1963;12:35–47. doi:10.1346/CCMN.1963.0120107.

    Article  Google Scholar 

  5. Cattaneo A, Gualtieri FA, Artioli G. Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Phys Chem Miner. 2003;30(3):177–83. doi:10.1007/s00269-003-0298-2.

    Article  CAS  Google Scholar 

  6. Zaremba T, Krząkała A, Piotrowski J, Garczorz D. Study on the thermal decomposition of chrysotile asbestos. J Therm Anal Calorim. 2010;101(2):479–85. doi:10.1007/s10973-010-0819-4.

    Article  CAS  Google Scholar 

  7. Kusiorowski R, Zaremba T, Piotrowski J, Adamek J. Thermal decomposition of different types of asbestos. J Therm Anal Calorim. 2012;109(2):693–704. doi:10.1007/s10973-012-2222-9.

    Article  CAS  Google Scholar 

  8. Hršak D, Sučik G, Lazić L. The thermophysical properties of serpentinite. Metalurgija. 2008;47(1):29–31.

    Google Scholar 

  9. Viti C. Serpentine minerals discrimination by thermal analysis. Am Mineral. 2010;95(4):631–8. doi:10.2138/am.2010.3366.

    Article  CAS  Google Scholar 

  10. Bloise A, Catalano M, Barrese E, Gualtieri AF, Bursi Gandolfi N, Capella S, et al. TG/DSC study of the thermal behaviour of hazardous mineral fibres. J Therm Anal Calorim. 2016;123(3):2225–39. doi:10.1007/s10973-015-4939-8.

    Article  CAS  Google Scholar 

  11. MacKenzie KJD, Meinhold RH. Thermal reactions of chrysotile revisited; a 29 Si and 25 Mg MAS NMR study. Am Mineral. 1994;79(1–2):43–50.

    CAS  Google Scholar 

  12. Gürtekin G, Albayrak M. Thermal reaction of antigorite: a XRD, DTA-TG work. Bull Miner Res Explor. 2006;133:41–9.

    Google Scholar 

  13. Trittschack R, Grobéty B. Dehydroxylation kinetics of lizardite. Eur J Mineral. 2012;24(1):47–57. doi:10.1127/0935-1221/2012/0024-2169.

    Article  CAS  Google Scholar 

  14. Trittschack R, Grobéty B, Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: a combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study. Phys Chem Miner. 2013;41(3):197–214. doi:10.1007/s00269-013-0638-9.

    Article  Google Scholar 

  15. Alizadehhesari K, Golding SD, Bhatia SK. Kinetics of the dehydroxylation of serpentine. Energy Fuels. 2012;26(2):783–90. doi:10.1021/ef201360b.

    Article  CAS  Google Scholar 

  16. Gualtieri AF, Giacobbe C, Viti C. The dehydroxylation of serpentine group minerals. Am Mineral. 2012;97(4):666. doi:10.2138/am.2012.3952.

    Article  CAS  Google Scholar 

  17. Zulumyan NO, Isaakyan AR, Oganesyan ZG. A new promising method for processing of serpentinites. Russ J Appl Chem. 2007;80(6):1020–2. doi:10.1134/S1070427207060353.

    Article  CAS  Google Scholar 

  18. Zulumyan NH, Papakhchyan LR, Isahakyan AR, Beglaryan HA, Terzyan AM. Study of mechanical impact on the crystal lattice of serpentines. Geochem Int. 2011;49(9):937–41. doi:10.1134/S0016702911090084.

    Article  CAS  Google Scholar 

  19. Zulumyan NH, Papakhchyan LR, Terzyan AM, Beglaryan HA, Isahakyan AR. Structural features of the silicate networks of serpentines. Theor Found Chem Eng. 2013;47(2):185–90. doi:10.1134/S0040579512040215.

    Article  CAS  Google Scholar 

  20. Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H. The mechanism of decomposition of serpentines from peridotites on heating. J Therm Anal Calorim. 2014;115(2):1003–12. doi:10.1007/s10973-013-3483-7.

    Article  CAS  Google Scholar 

  21. Zulumyan NH, Papakhchyan LR, Isahakyan AR, Beglaryan HA, Aloyan SG. Effect of mechanical treatment on the silicate lattice of kaolinite. Russ J Phys Chem A. 2012;86(12):1887–91. doi:10.1134/S003602441212028X.

    Article  CAS  Google Scholar 

  22. Zulumyan NH, Papakhchyan LR, Isahakyan AR, Beglaryan HA, Aloyan SG. The influence of mechanical treatment on the silicate network of talc. Russ J Phys Chem A. 2012;86(6):1008–13. doi:10.1134/S0036024412060350.

    Article  CAS  Google Scholar 

  23. Velinskii VV, Gusev GM. Production of extra pure silica from serpentinites. J Min Sci. 2002;38(4):402–4. doi:10.1023/a:1023324206554.

    Article  Google Scholar 

  24. Teir S, Revitzer H, Eloneva S, Fogelholm C-J, Zevenhoven R. Dissolution of natural serpentinite in mineral and organic acids. Int J Miner Process. 2007;83(1–2):36–46. doi:10.1016/j.minpro.2007.04.001.

    Article  CAS  Google Scholar 

  25. Gladikova LA, Teterin VV, Freidlina RG. Production of magnesium oxide from solutions formed by acid processing of serpentinite. Russ J Appl Chem. 2008;81(5):889–91. doi:10.1134/s1070427208050339.

    Article  CAS  Google Scholar 

  26. Fedoročková A, Hreus M, Raschman P, Sučik G. Dissolution of magnesium from calcined serpentinite in hydrochloric acid. Miner Eng. 2012;32:1–4. doi:10.1016/j.mineng.2012.03.006.

    Article  Google Scholar 

  27. Sučik G, Szabóová A, Popovič L, Hršak D. The relationship between thermal treatment of serpentine and its reactivity. Mater Technol. 2016;50(1):55–8. doi:10.17222/mit.2014.222.

    Google Scholar 

  28. Zulumyan NO, Isaakyan AR, Pirumyan PA, Beglaryan AA. The structural characteristics of amorphous silicas. Russ J Phys Chem A. 2010;84(4):791–3. doi:10.1134/S003602441004031X.

    Article  Google Scholar 

  29. Isahakyan AR, Beglaryan HA, Pirumyan PA, Papakhchyan LR, Zulumyan NH. An IR spectroscopic study of amorphous silicas. Russ J Phys Chem A. 2011;85(1):72–5. doi:10.1134/S0036024410121015.

    Article  CAS  Google Scholar 

  30. Torosyan A, Zulumyan N, Hovhannisyan Z, Ghazaryan S, editors. The influence of mechanical processing on the process of thermal reduction of SiO 2 by Al powder. In: EPD Congress 2005 as held at the 2005 TMS Annual Meeting; 2005.

  31. Zulumyan N, Isahakyan A, Hovhannisyan Z, Torosyan A. The influence of mechanical activation on the process of thermal reduction of silica by magnesium powder. Magnes Technol. 2006;2006:351–4.

    Google Scholar 

  32. Zulumyan N, Mirgorodski A, Isahakyan A, Beglaryan H, Gabrielyan A, Terzyan A. A low-temperature method of the β—wollastonite synthesis. J Therm Anal Calorim. 2015;122(1):97–104. doi:10.1007/s10973-015-4752-4.

    Article  CAS  Google Scholar 

  33. Kirschenbaum H. The classical chemical analysis of silicate rocks: the old and the new, vol. 1547. Washington: Geological survey bulletin; 1983.

    Google Scholar 

  34. Langford JI, Wilson AJC. Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr. 1978;11(2):102–13. doi:10.1107/S0021889878012844.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the RA MES State Committee of Science, in the frames of the research project no 16YR-1D025. Authors are very grateful to Dr. M. Mellini for providing the CHR-23 sample and information about its occurrence.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nshan Zulumyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zulumyan, N., Isahakyan, A., Beglaryan, H. et al. A study of thermal decomposition of antigorite from dunite and lizardite from peridotite. J Therm Anal Calorim 131, 1201–1211 (2018). https://doi.org/10.1007/s10973-017-6705-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6705-6

Keywords

Navigation