Skip to main content
Log in

Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The pyrolysis kinetic behavior of sweet sorghum bagasse (SSB) and cotton stalk (CS) samples was investigated in this work. Thermogravimetric analysis of two samples at five heating rates (15, 25, 35, 45 and 55 °C min−1) in nitrogen atmosphere was performed. Results show that the pyrolysis trends of SSB and CS in their respective five heating rates are similar. The thermal decomposition process of the SSB and CS can be divided into four stages. With the heating rate increasing, the main pyrolysis stage appeared thermal hysteresis phenomenon, the whole TG and DTG curves shifted to the higher temperature area, and the maximum pyrolysis rate increased too. For the kinetic analysis, fifteen degrees of conversion (α) were selected between 10 and 80% using the two isoconversional methods of Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO). The average activation energies for SSB and CS were found to be between 154.61 and 142.93 kJ mol−1 by KAS method and 155.61 and 145.39 kJ mol−1 using FWO method, respectively. Also, the variation of activation energy with the degree of conversion shows the apparent activation energies changed with the conversion degree, rising in an irregular jagged trend. The apparent activation energy value of SSB is also seen to be higher than that of CS at the same degree of conversion (α) except when it is 80% which gives lower value. The works therefore provide useful information for understanding energy requirement in pyrolysis process of biomass and in pyrolysis system design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zabaniotou AA, Karabelas AJ. The Evritania (Greece) demonstration plant of biomass pyrolysis. Biomass Bioenerg. 1999;16:431–45.

    Article  CAS  Google Scholar 

  2. Radhakumari M, Prakash DJ, Satyavathi B. Pyrolysis characteristics and kinetics of algal biomass using tga analysis based on ICTAC recommendations. Biomass Conv Bioref. 2016;6:189–95.

    Article  CAS  Google Scholar 

  3. Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass. Biores Technol. 2012;114:663–9.

    Article  CAS  Google Scholar 

  4. Madhu P, Kanagasabapathy H, Manickam IN. Cotton shell utilization as a source of biomass energy for bio-oil by flash pyrolysis on electrically heated fluidized bed reactor. J Mater Cycles Waste Manag. 2016;18:146–55.

    Article  CAS  Google Scholar 

  5. Lu Q, Li WZ, Zhu XF. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers Manag. 2009;50:1376–83.

    Article  CAS  Google Scholar 

  6. Ong YK, Bhatia S. The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils. Energy. 2009;35:111–9.

    Article  Google Scholar 

  7. Wang SR, Ru B, Lin HZ, Sun WX, Yu CJ, Luo ZY. Pyrolysis mechanism of hemicellulose monosaccharides in different catalytic processes. Chem Res Chin Univ. 2014;30:848–54.

    Article  Google Scholar 

  8. Liang SB, Han YL, Wei LQ, McDonald AG. Production and characterization of bio-oil and bio-char from pyrolysis of potato peel wastes. Biomass Conv Bioref. 2015;5:237–46.

    Article  CAS  Google Scholar 

  9. Han B, Chen Y, Wu YL, Hua DR, Chen Z, Feng W, Yang MD, Xie QH. Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis. J Therm Anal Calorim. 2014;115:227–35.

    Article  CAS  Google Scholar 

  10. Chen GY, Fang MX, Andries J, Luo ZY, Spliethoff H, Cen KF. Kinetics study on biomass pyrolysis for fuel gas production. J Zhejiang Univ Sci A. 2003;4:441–7.

    Article  Google Scholar 

  11. Zhao YP, Ding M, Dou YQ, Fan X, Wang YL, Wei XY. Comparative study on the pyrolysis behaviors of corn stalk and pine sawdust using TG-MS. Trans Tianjin Univ. 2014;20:091–6.

    Article  CAS  Google Scholar 

  12. Frost RL, Bouzaid JM, Musumeci AW, Kloprogge JT, Martens WN. Thermaldecomposition of the synthetic hydrotalcite iowaite. J Therm Anal Calorim. 2006;86:437–41.

    Article  CAS  Google Scholar 

  13. Oyedun AO, Tee CZ, Hanson SC, Hui W. Thermogravimetric analysis of the pyrolysis characteristics and kinetics of plastics and biomass blends. Fuel Process Technol. 2014;128:471–81.

    Article  CAS  Google Scholar 

  14. Wang JX, Zhao HB. Error evaluation on pyrolysis kinetics of sawdust using iso-conversional methods. J Therm Anal Calorim. 2016;124:1635–40.

    Article  CAS  Google Scholar 

  15. Šimon P. The single-step approximation. J Therm Anal Calorim. 2007;88:709–15.

    Article  Google Scholar 

  16. Roduit B, Xia L, Folly P, Berger B, Mathieu J, Sarbach A, Andres H, Ramin M, Vogelsanger B, Spitzer D, Moulard H, Dilhan D. The simulation of the thermal behavior of energetic materials based on dsc and hfc signals. J Therm Anal Calorim. 2008;93:143–52.

    Article  CAS  Google Scholar 

  17. Doca N, Vlase G, Vlase T, Ilia G. Thermal behavior of Cd2+ and Co2+ phenyl-vinyl-phosphonates under non-isothermal condition. J Therm Anal Calorim. 2008;94:441–5.

    Article  CAS  Google Scholar 

  18. Alper K, Tekin K, Karagöz S. Pyrolysis of agricultural residues for bio-oil production. Clean Techn Environ Policy. 2014;17:211–23.

    Article  Google Scholar 

  19. Antonio SV, Elke G, Nestor GH. Effect of the number of TGA curves employed on the biomass pyrolysis kinetics results obtained using the distributed activation energy model. Fuel Process Technol. 2015;134:360–71.

    Article  Google Scholar 

  20. Chen DY, Liu RH, Cai JM. Pyrolysis kinetics of pre-treated sweet sorghum bagasse. Trans CSAE. 2007;23:188–94.

    CAS  Google Scholar 

  21. Vyazovkin S, Chrissafis K, Lorenzo MLD, Koga N, Pijolat M, Roduit B, Sbirrazzuoli N, Suñol JJ. ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim Acta. 2014;590:1–23.

    Article  CAS  Google Scholar 

  22. Păcurariu C, Lazău RI, Lazău I, Ianoş R, Vlase T. Influence of the specific surface area on crystallization process kinetics of some silica gels. J Therm Anal Calorim. 2009;97:409–14.

    Article  Google Scholar 

  23. Khonde RD, Chaurasia AS. Pyrolysis of sawdust, rice husk and sugarcane bagasse: kinetic modeling and estimation of kinetic parameters using different optimization tools. J Inst Eng. 2015;96:23–30.

    CAS  Google Scholar 

  24. Zhu FL, Feng QQ, Xu YF, Liu RT, Li KJ. Kinetics of pyrolysis of ramie fabric wastes from thermogravimetric data. J Therm Anal Calorim. 2015;119:651–7.

    Article  CAS  Google Scholar 

  25. Fernandes GJT, Araújo AS, Jr VJF, Novák C. Model-free kinetics applied to regeneration of coked alumina. J Therm Anal Calorim 2004;75:687–92.

  26. Vyazovkin S. Model-free kinetics. J Therm Anal Calorim. 2006;83:45–51.

    Article  CAS  Google Scholar 

  27. Budrugeac P. The Kissinger law and the IKP method for evaluating the non-isothermal kinetic parameters. J Therm Anal Calorim. 2007;89:143–51.

    Article  CAS  Google Scholar 

  28. Cai JM, Liu RH, Huang CX. Kinetic analysis of nonisothermal solid-state reactions determination of the kinetic parameters by means of a nonlinear regression method. J Math Chem. 2008;44:551–8.

    Article  CAS  Google Scholar 

  29. Mocioiu OC, Zaharescu M, Jitianu G, Budrugeac P. Kinetic parameters determination in non-isothermal conditions for the crystallisation of a silica-soda-lead glass. J Therm Anal Calorim. 2006;86:429–36.

    Article  CAS  Google Scholar 

  30. Cao XM, Yang X, Shi JY, Liu YW, Wang CX. The effect of glucose on bovine serum albumin denatured aggregation kinetics at high concentration. J Therm Anal Calorim. 2008;93:451–8.

    Article  CAS  Google Scholar 

  31. Jankovic B. The pyrolysis process of wood biomass samples under isothermal experimental conditions-energy density considerations: application of the distributed apparent activation energy model with a mixture of distribution functions. Cellulose. 2014;21:2285–314.

    Article  CAS  Google Scholar 

  32. Vyazovkina S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  Google Scholar 

  33. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis, part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  34. Hu RZ, Gao SL, Zhao FQ, Shi QZ, Zhang TL, Zhang JJ. Thermal analysis kinetics. BeiJing: Science Press; 2008. p. 28–32.

    Google Scholar 

  35. Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    Article  CAS  Google Scholar 

  36. Braga RM, Melo DMA, Aquino FM, Freitas JCO, Melo MAF, Barros JMF, Fontes MSB. Characterization and comparative study of pyrolysis kinetics of the rice husk and the elephant grass. J Therm Anal Calorim. 2014;115:1915–20.

    Article  CAS  Google Scholar 

  37. El-Sayed SAM, Mostafa E. Kinetic parameters determination of biomass pyrolysis fuels using TGA and DTA techniques. Waste Biomass Valor. 2015;6:401–15.

    Article  CAS  Google Scholar 

  38. Liao YF, Wang SR, Luo ZY, Zhou JS, Yu CJ, Cen KF. Research on cellulose pyrolysis kinetics. J Zhejiang Univ. 2002;36(172–176):189.

    Google Scholar 

  39. Wang W, Li SY, Yue CT, Ma Y. Multistep pyrolysis kinetics of North Korean oil shale. J Therm Anal Calorim. 2015;119:643–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

These authors are grateful to the Liaoning Province Natural Science Foundation of China (No. 2015020648).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Shuang E & Liu, L. Analysis of pyrolysis characteristics and kinetics of sweet sorghum bagasse and cotton stalk. J Therm Anal Calorim 131, 1899–1909 (2018). https://doi.org/10.1007/s10973-017-6585-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6585-9

Keywords

Navigation