Skip to main content
Log in

Polyethylene catalytic cracking by thermogravimetric analysis

Effects of zeolitic properties and homogenization process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polymer degradation by the catalytic cracking process has been investigated as an important way of hydrocarbon recovery with high added value. In addition, the effects of the catalyst properties and their behavior during the catalytic degradation of polyolefins have been studied using thermogravimetric analysis. In this context, the present work compares the interactions between the polymeric molecules and the contact surface of zeolitic catalysts (hierarchical and standard Beta zeolites, Y zeolite, ZSM-5, ZSM-12 and MCM-22) with different properties, in the catalytic cracking reactions of low-density polyethylene. It was also possible to evaluate distinct reaction mechanisms in function of the thermal homogenization procedure employed by thermogravimetric analysis. Among the zeolites with large pore diameters, the hierarchical Beta showed superior external area due to the use of a bulky silanized agent (phenylaminopropyl-trimethoxysilane) in the synthesis. In cracking reactions, the polymeric macromolecules mainly react in the external surface of the catalysts due to the several diffusional limitations imposed. Thus, the zeolitic catalysts exhibited behaviors respective to a combination of accessibility to the active centers and selectivity in function of the acid strength of the centers. So, based on this process, zeolites with larger external area values (hierarchical Beta, standard Beta, ZSM-5 and MCM-22) promoted the lower values of degradation temperature with high efficiency of conversion.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ali MF, Ahmed S, Qureshi MS. Catalytic coprocessing of coal and petroleum residues with waste plastics to produce transportation fuels. Fuel Process Technol. 2011;92:1109–20.

    Article  CAS  Google Scholar 

  2. Moinuddin SM, Mohammad MR, Mohammed M. Abundant high-density polyethylene (HDPE-2) turns into fuel by using of HZSM-5 catalyst. J Fundam Renew Energy Appl. 2011;1:1–12.

    Google Scholar 

  3. Rapacz-Kmita A, Gajek M, Dudek M, Stodolak-Zych E, Szaraniec B, Lach R. Thermal, structural and mechanical analysis of polymer/clay nanocomposites with controlled degradation. J Therm Anal Calorim. 2017;127:389–98.

    Article  CAS  Google Scholar 

  4. Valanciene E, Miknius L, Pedisius N. The influence of zeolite catalyst on kinetics and thermodynamics of polypropylene waste thermal degradation. J Therm Anal Calorim. 2016;124:341–54.

    Article  CAS  Google Scholar 

  5. Elordi G, Olazar M, Lopez G, Amutio M, Artetxe M, Aguado R, Bilbao J. Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Anal Appl Pyrolysis. 2009;85:345–51.

    Article  CAS  Google Scholar 

  6. Aguado J, Serrano DP, Miguel GS, Escola JM. Catalytic activity of zeolitic and mesostructured catalysts in the cracking of pure and polyolefins. J Anal Appl Pyrolysis. 2007;78:153–61.

    Article  CAS  Google Scholar 

  7. Al-Salem SM, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW). Rev Waste Manag. 2009;29:2625–43.

    Article  CAS  Google Scholar 

  8. Xu J, Jung K, Atme A, Shanmugam S, Boyer C. A robust and versatile photoinduced living polymerization of conjugated and unconjugated monomers and its oxygen tolerance. J Am Chem Soc. 2014;136:5508–19.

    Article  CAS  Google Scholar 

  9. Vidal F, Gowda RR, Chen EYX. Chemoselective, stereospecific, and living polymerization of polar divinyl monomers by chiral zirconocenium catalysts. J Am Chem Soc. 2015;137:9469–80.

    Article  CAS  Google Scholar 

  10. Hujuri U, Ghoshal AK, Gumma S. Modeling pyrolysis kinetics of plastic mixtures. Polym Degrad Stab. 2008;93:1832–7.

    Article  CAS  Google Scholar 

  11. Liu WJ, Tian K, Jiang H, Zhang XS, Yang GX. Preparation of liquid chemical feedstocks by co-pyrolysis of electronic waste and biomass without formation of polybrominated dibenzo-p-dioxins. Bioresour Technol. 2013;128:1–7.

    Article  CAS  Google Scholar 

  12. Liu W, Hu C, Yang Y, Tong D, Li G, Zhu L. Influence of ZSM-5 zeolite on the pyrolytic intermediates from the co-pyrolysis of pubescens and LDPE. Energy Convers Manag. 2010;51:1025–32.

    Article  CAS  Google Scholar 

  13. Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L. Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: a review. Renew Sustain Energy Rev. 2016;61:433–50.

    Article  CAS  Google Scholar 

  14. Soják L, Kubinec R, Jurdáková H, Bajus M. High resolution gas chromatographic–mass spectrometric analysis of polyethylene and polypropylene thermal cracking products. J Anal Appl Pyrolysis. 2007;78:387–99.

    Article  Google Scholar 

  15. Serrano DP, Aguado J, Escola JM. Developing advanced catalysts for the conversion of polyolefinic waste plastics into fuels and chemicals. ACS Catal. 2012;2:1924–41.

    Article  CAS  Google Scholar 

  16. Juárez-Hernández L, Pérez-Pariente J, Aguilar-Pliego J, Múgica-Álvarez V, Gutiérrez-Arzaluz M, Grande MS, Márquez-Álvarez C, Sastre E. Mesoporous materials with enhanced porosity and acidity to obtain clean fuels from low-density polyethylene (LDPE) cracking. J Porous Mater. 2015;22:269–81.

    Article  Google Scholar 

  17. Roy GK, Bipin K, Jha S. Chromatographic study of the recovered gases from hydropyrolytic de-polymerization of LDPE, MDPE and HDPE mix type of waste polyethylene. Appl Petrochem Res. 2016;6:65–72.

    Article  CAS  Google Scholar 

  18. Durmuş A, Naci Koç S, Selda Pozan G, Kaşgöz A. Thermal-catalytic degradation kinetics of polypropylene over BEA, ZSM-5 and MOR zeolites. Appl Catal B Environ. 2005;61:316–22.

    Article  Google Scholar 

  19. Marcilla A, Gómez-Siurana A, Valdés F. Catalytic cracking of low-density polyethylene over H-Beta and HZSM-5 zeolites: Influence of the external surface. Kinetic model. Polym Degrad Stab. 2007;92:197–204.

    Article  CAS  Google Scholar 

  20. Boughattas I, Ferry M, Dauvois V, Lamouroux C, Dannoux-Papin A, Leoni E, Balanzat E, Esnouf S. Thermal degradation of γ-irradiated PVC: I-dynamical experiments. Polym Degrad Stab. 2016;26:219–26.

    Article  Google Scholar 

  21. Marcilla A, Beltrán MI, Navarro R. TG/FT-IR analysis of HZSM5 and HUSY deactivation during the catalytic pyrolysis of polyethylene. J Anal Appl Pyrolysis. 2006;76:222–9.

    Article  CAS  Google Scholar 

  22. Garforth A, Fiddy S, Lin YH, Ghanbari-Siakhali A, Sharratt PN, Dwyer J. Catalytic degradation of high density polyethylene: an evaluation of mesoporous and microporous catalysts using thermal analysis. Thermochim Acta. 1997;294:65–9.

    Article  CAS  Google Scholar 

  23. Coelho A, Costa L, Marques MM, Fonseca IM, Lemos MANDA, Lemos F. The effect of ZSM-5 zeolite acidity on the catalytic degradation of high-density polyethylene using simultaneous DSC/TG analysis. Appl Catal A Gen. 2012;413–414:183–91.

    Article  Google Scholar 

  24. Gobin K, Manos G. Thermogravimetric study of polymer catalytic degradation over microporous materials. Polym Degrad Stab. 2004;86:25–31.

    Article  Google Scholar 

  25. Park JW, Kim J, Seo G. The effect of pore shape on the catalytic performance of zeolites in the liquid-phase degradation of HDPE. Polym Degrad Stab. 2002;76:495–501.

    Article  CAS  Google Scholar 

  26. Li K, Valla J, Garcia-Martinez J. Realizing the commercial potential of hierarchical zeolites: new opportunities in catalytic cracking. ChemCatChem. 2014;6:46–66.

    Article  CAS  Google Scholar 

  27. Möller K, Bein T. Mesoporosity-a new dimension for zeolites. Chem Soc Rev. 2013;2013(42):3689–707.

    Article  Google Scholar 

  28. Perez-Ramirez J, Christensen CH, Egeblad K, Christensen CH, Groen JC. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem Soc Rev. 2008;37:2530–42.

    Article  CAS  Google Scholar 

  29. Čejka J, Centi G, Perez-Pariente J, Roth WJ. Zeolite-based materials for novel catalytic applications: opportunities, perspectives and open problems. Catal Today. 2012;179:2–15.

    Article  Google Scholar 

  30. Serrano DP, Escola JM, Pizarro P. Synthesis strategies in the search for hierarchical zeolites. Chem Soc Rev. 2013;42:4004–35.

    Article  CAS  Google Scholar 

  31. Serrano DP, Pinnavaia TJ, Aguado J, Escola JM, Peral A, Villalba L. Hierarchical ZSM-5 zeolites synthesized by silanization of protozeolitic units: mediating the mesoporosity contribution by changing the organosilane type. Catal Today. 2014;227:15–25.

    Article  CAS  Google Scholar 

  32. Milina M, Mitchell S, Michels NL, Kenvin J, Perez-Ramirez J. Interdependence between porosity, acidity, and catalytic performance in hierarchical ZSM-5 zeolites prepared by post-synthetic modification. J Catal. 2013;308:398–407.

    Article  CAS  Google Scholar 

  33. Ishihara A, Inui K, Hashimoto T, Nasu H. Preparation of hierarchical b and Y zeolite-containing mesoporous sílica-aluminas and their properties for catalytic cracking of n-dodecane. J Catal. 2012;295:81–90.

    Article  CAS  Google Scholar 

  34. Ramasamya KK, Zhang H, Sunb J, Wanga Y. Conversion of ethanol to hydrocarbons on hierarchical HZSM-5 zeolites. Catal Today. 2014;238:103–10.

    Article  Google Scholar 

  35. Bleken FL, Barbera K, Bonino F, Olsbye U, Lillerud KP, Bordiga S, Beato P, Janssens TVW, Svelle S. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons. J Catal. 2013;307:62–73.

    Article  CAS  Google Scholar 

  36. Svelle S, Sommer L, Barbera K, Vennestrøm PNR, Olsbye U, Lillerud KP, Bordiga S, Pan YH, Beato P. How defects and crystal morphology control the effects of desilication. Catal Today. 2011;168:38–47.

    Article  CAS  Google Scholar 

  37. Serrano DP, Escola JM, Briones L, Medina S, Martinez A. Hydroreforming of the oils from LDPE thermal cracking over Ni–Ru and Ru supported over hierarchical Beta zeolite. Fuel. 2015;144:287–94.

    Article  CAS  Google Scholar 

  38. Aguado J, Serrano DP, Escola JM, Briones L. Deactivation and regeneration of a Ni supported hierarchical Beta zeolite catalyst used in the hydroreforming of the oil produced by LDPE thermal cracking. Fuel. 2013;109:679–86.

    Article  CAS  Google Scholar 

  39. García-Muñoz RA, Serrano DP, Vicente G, Linares M, Vitvarova D, Cejka J. Remarkable catalytic properties of hierarchical zeolite-Beta in epoxide rearrangement reactions. Catal Today. 2015;243:141–52.

    Article  Google Scholar 

  40. Pérez-ramírez J, Abelló S, Bonilla A, Groen JC. Tailored mesoporosity development in zeolite crystals by partial detemplation and desilication. Adv Funct Mater. 2009;19:164–72.

    Article  Google Scholar 

  41. Caldeira VPS, Peral A, Linares M, Araujo AS, Garcia-Muñoz RA, Serrano DP. Properties of hierarchical Beta zeolites prepared from protozeolitic nanounits for the catalytic cracking of high density polyethylene. Appl Catal A Gen. 2016;. doi:10.1016/j.apcata.2016.11.003.

    Google Scholar 

  42. Camblor MA, Corma A, Mifsud A, Pérez-Pariente J, Valencia S. Synthesis of nanocrystalline zeolite beta in the absence of alkali metal cations. Stud Surf Sci Catal. 1997;105:341–8.

    Article  Google Scholar 

  43. Argauer RJ, Landolt GR (1978) US Pat. RE 29857.

  44. Caldeira VPS, Santos AGD, Pergher SBC, Costa MJF, Araujo AS. Use of a low-cost template-free ZSM-5 for atmospheric petroleum residue pyrolysis. Quim Nova. 2016;39–3:292–7.

    Google Scholar 

  45. Araujo AS, Silva AOS, Souza MJB, Coutinho ACSLS, Aquino JMFB, Moura JA, Pedrosa AMG. Crystallization of ZSM-12 zeolite with different Si/Al ratio. Adsorption. 2005;11:159–65.

    Article  CAS  Google Scholar 

  46. Pergher SBC, Corma A, Fornés V. Preparation and characterization of MCM-22 zeolite and its layered precursor. Quim Nova. 2003;26:795–802.

    Article  CAS  Google Scholar 

  47. Calgaroto C, Scherer RP, Calgaroto S, Oliveira JV, Oliveira D, Pergher SBC. Immobilization of porcine pancreatic lipase in zeolite MCM 22 with different Si/Al ratios. Appl Catal A Gen. 2011;394:101–4.

    Article  CAS  Google Scholar 

  48. Database of Zeolite Structures. International Zeolite Association 2017. http://www.iza-strucuture.org. Accessed 03 Mar 2017.

  49. Morales-Pacheco P, Alvarez F, Bucio L, Domínguez JMJ, Phys J. Synthesis and structural properties of zeolitic nanocrystals II: FAU-type zeolites. Chem C. 2009;113:2247–55.

    CAS  Google Scholar 

  50. Holmberg BA, Wang H, Yan Y. High silica zeolite Y nanocrystals by dealumination and direct synthesis. Microporous Mesoporous Mater. 2004;74:189–98.

    Article  CAS  Google Scholar 

  51. Aguado J, Serrano DP, Rodríguez JM. Zeolite Beta with hierarchical porosity prepared from organofunctionalized seeds. Microporous Mesoporous Mater. 2008;115:504–13.

    Article  CAS  Google Scholar 

  52. Kore R, Srivastava R, Satpati B. Synthesis of industrially important aromatic and heterocyclic ketones using hierarchical ZSM-5 and Beta zeolites. Appl Catal A Gen. 2015;493:129–41.

    Article  CAS  Google Scholar 

  53. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;. doi:10.1515/pac-2014-1117.

    Google Scholar 

  54. Lin X, Zhang Z, Sun J, Guo W, Wang Q. Effects of phosphorus-modified HZSM-5 on distribution of hydrocarbon compounds from wood–plastic composite pyrolysis using Py-GC/MS. J Anal Appl Pyrolysis. 2015;116:223–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are immensely grateful to the Department of Chemical and Environmental Technology of the Rey Juan Carlos University (URJC, Spain) for performing the ammonia TPD analyses. The authors also thank the Foundation for the Coordination and Improvement of Higher Level or Education Personnel (CAPES, Brazil) for its financial support to this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinícius P. S. Caldeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caldeira, V.P.S., Santos, A.G.D., Oliveira, D.S. et al. Polyethylene catalytic cracking by thermogravimetric analysis. J Therm Anal Calorim 130, 1939–1951 (2017). https://doi.org/10.1007/s10973-017-6551-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6551-6

Keywords

Navigation