Skip to main content
Log in

Stability study of α-toc/β-CD powders obtained by microwave heating and encapsulation process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The α-tocopherol (α-toc) degrades faster than both γ- and δ-toc; its degradation rate is 10 times faster than δ-toc. The foremost factors that could affect the stability of vitamins upon storage are light, oxygen, and heat. Thus, this study aimed to investigate the thermal, storage, and physical stability of the α-tocopherol/β-cyclodextrin (α-toc/β-CD) powder obtained via microwave heating and encapsulation process. DSC, TG, and DTG were performed for thermal stability characterizations, while storage study was performed to investigate the stability of the encapsulated and non-encapsulated α-toc stored at 5, 28, and 50 °C for 42 days. The results obtained were then fitted with first-order degradation kinetic model to obtain the half-life for each sample. The physical stability in terms of flowability and compressibility was also studied during the storage. Encapsulation of α-toc into β-CD has successfully increased the thermal stability of α-toc to a higher decomposition temperature from 280 to 300 °C. The storage study showed that the encapsulation of α-toc by β-CD using the microwave technique has successfully improved the shelf life of α-toc with the half-life of 990, 523 and 126 days for samples stored at 5, 28, and 50 °C, respectively, with a good flow powder characteristics except for powder stored at 50 °C which showed passable flow powder characteristics after 42 days of storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hategekimana J, Masamba KG, Ma J, Zhong F. Encapsulation of vitamin E: effect of physicochemical properties of wall material on retention and stability. Carbohydr Polym. 2015;124:172–9.

    Article  CAS  Google Scholar 

  2. U.S. Department of Agriculture ARS. USDA National Nutrient Database for Standard Reference, Release 20. Nutrient Data Laboratory Home Page; 2007. http://www.ars.usda.gov/ba/bhnrc/ndl. Accessed 04 Jan 2017.

  3. Player ME, Kim HJ, Lee HO, Min DB. Stability of α-, γ-, or δ-tocopherol during soybean oil oxidation. J Food Sci. 2006;71(8):456–60.

    Article  Google Scholar 

  4. Chung HY. Characterization of thermal products of alpha-tocopherol. Prev Nutr Food Sci. 2004;9:295–9.

    Article  CAS  Google Scholar 

  5. Barrera-Arellano D, Ruiz-Méndez V, Ruiz GM, Dobarganes C. Loss of tocopherols and formation of degradation compounds in triacylglycerol model systems heated at high temperature. J Sci Food Agric. 1999;79:1923–8.

    Article  CAS  Google Scholar 

  6. Lino MES, Ruela ALM, Trevisan MG, Pereira GR. Influence of hydration and crosslinking in transdermal delivery of nicotine from chitosan-based gels by thermal analysis. J Therm Anal Calorim. 2017. doi:10.1007/s10973-017-6129-3.

  7. Wang F, Chandler P, Oszust R, Sowell E, Graham Z, Ardito W, Hu X. Thermal and structural analysis of silk–polyvinyl acetate blends. J Therm Anal Calorim. 2017;127(1):923–9.

    Article  CAS  Google Scholar 

  8. Dambrauskas T, Baltakys K, Eisinas A, Siauciunas R. A study of kilchoanite synthesized under hydrothermal conditions. J Therm Anal Calorim. 2017;127(1):229–38.

    Article  CAS  Google Scholar 

  9. Han Z, Zhuang D, Yan H, Zhao H, Sun B, Hu W, Xuan Q, Chen J, Xiu Y. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J Therm Anal Calorim. 2017;127(2):1371–9.

    Article  CAS  Google Scholar 

  10. Budrugeac P, Carsote C, Miu L. Application of thermal analysis methods for damage assessment of leather in an old military coat belonging to The History Museum of Brasov—Romania. J Therm Anal Calorim. 2017;127(1):765–72.

    Article  CAS  Google Scholar 

  11. Lešková E, Kubikova J, Kovacikova E, Kosicka M, Porubska J, Holcikova K. Vitamin losses: retention during heat treatment and continual changes expressed by mathematical models. J Food Compos Anal. 2006;19:252–76.

    Article  Google Scholar 

  12. García-Segovia P, Barreto-Palacios V, Breton J, Martinez-Monzo J. Microencapsulation of essentials oils using β-cyclodextrin: applications in gastronomy. J Culin Sci Technol. 2011;9(3):150–7.

    Article  Google Scholar 

  13. Chang PS, Lee JH, Lee JH. Development of a new colorimetric method determining the yield of microencapsulation of α-tocopherol. J Agric Food Chem. 2005;53:7385–9.

    Article  CAS  Google Scholar 

  14. Miquel E, Alegria A, Barbera R, Farre R, Clemente G. Stability of tocopherols in adapted milk-based infant formulas during storage. Int Dairy J. 2004;14:1003–11.

    Article  CAS  Google Scholar 

  15. Farias MC, Moura ML, Andrade L, Leao MHMR. Encapsulation of the alpha-tocopherol in a glassy food model matrix. Mater Res. 2007;10:57–62.

    Article  CAS  Google Scholar 

  16. Robert P, Carlsson RM, Romero N, Masson L. Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. J Am Oil Chem Soc. 2003;80(11):1115–20.

    Article  CAS  Google Scholar 

  17. Chinta DD, Graves RA, Pamujula S, Praetorius N, Bostanian LA, Mandal TK. Spray-dried chitosan as a direct compression tableting excipient. Drug Dev Ind Pharm. 2009;35:43–8.

    Article  CAS  Google Scholar 

  18. Koontz JL, Marcy JE, O’keefe SF, Duncan SE. Cyclodextrin inclusion complex formation and solid-state characterization of the natural antioxidants α-tocopherol and quercetin. J Agric Food Chem. 2009;57:1162–71.

    Article  CAS  Google Scholar 

  19. Brown ME. Introduction to thermal analysis. Dorcrecht: Kluwer; 2001.

    Google Scholar 

  20. Zohuriaan MJ, Shokrolahi F. Thermal studies on natural and modified gums. Polym Test. 2004;23:575–9.

    Article  CAS  Google Scholar 

  21. Cerqueira MT, da Silva LP, Santos TC, Pirraco RP, Correlo VM, Reis RL, Marques AP. Gellan gum-hyaluronic acid spongy-like hydrogels and cells from adipose tissue synergize promoting neoskin vascularization. ACS Appl Mater Interfaces. 2014;6(22):19668–79.

    Article  CAS  Google Scholar 

  22. Chen W, Yang LJ, Ma SX, Yang XD, Fan BM, Lin J. Crassicauline A/β cyclodextrin host–guest system: preparation, characterization, inclusion mode, solubilization and stability. Carbohydr Polym. 2011;84(4):1321–8.

    Article  CAS  Google Scholar 

  23. Liu L, Zhu S. Preparation and characterization of inclusion complexes of prazosin hydrochloride with beta-cyclodextrin and hydroxypropyl-beta-cyclodextrin. J Pharm Biomed. 2006;40(1):122–7.

    Article  CAS  Google Scholar 

  24. Van Aardt M, Duncan SE, Long TE, O’Keefe SF, Marcy JE, Sims SR. Effect of antioxidants on oxidative stability of edible fats and oils: thermogravimetric analysis. J Agric Food Chem. 2004;52:587–91.

    Article  Google Scholar 

  25. Shamai K, Shimoni E, Bianco-Peled H. X-ray scattering of resistant starch type III. Biomacromol. 2004;5:219–23.

    Article  CAS  Google Scholar 

  26. Chandrasekaram K, Ng MH, Choo YM, Chuah CH. Effect of storage temperature on the stability of phytonutrients in palm concentrates. Am J Appl Sci. 2009;6(3):529–33.

    Article  CAS  Google Scholar 

  27. Dian NLHM, Sudin N, Yusoff MSA. Characteristics of microencapsulated palm-based oil as affected by type of wall material. J Sci Food Agric. 1996;70:422–6.

    Article  CAS  Google Scholar 

  28. Hidalgo A, Brandolini A, Pompei C. Kinetics of tocols degradation during the storage of einkorn (Triticum monococcum L. ssp. monococcum) and breadwheat (Triticum aestivum L. ssp. aestivum) flours. Food Chem. 2009;116:821–7.

    Article  CAS  Google Scholar 

  29. İpek U, Arslan EI, Őbek E, Karataş F, Erulaş FA. Determination of vitamin losses and degradation kinetics during composting. Process Biochem. 2005;40:621–4.

    Article  Google Scholar 

  30. Lavelli V, Fregapane G, Salvador MD. Effect of storage on secoiridoid and tocopherol contents and antioxidant activity of monovarietal extra virgin olive oils. J Agric Food Chem. 2006;54:3002–7.

    Article  CAS  Google Scholar 

  31. Gutiérrez F, Fernández JL. Determinant parameters and components in the storage of virgin olive oil. Prediction of storage time beyond which the oil is no longer of “extra” quality. J Agric Food Chem. 2002;50:571–7.

    Article  Google Scholar 

  32. Abhaykumar B. Correlation between physical properties and flowability indicators for fine powders. A Thesis of Master of Science, Department of Chemical Engineering, University of Saskatchewan, Saskatoon; 2006.

  33. Varona S, Kareth S, Cocero M. Encapsulation of essentials oils using biopolymers for their use in ecological agriculture. In: Proceedings of the international symposium on supercritical fluids, vol. 1. Arcachon; 2009. p. 1413–18.

  34. Freeman R. The flowability of powders—an empirical approach. In: International conference on powder & bulk solids handling. IMechE HQ, London; 2000.

  35. Cain J. An alternative technique for determining ANSI/CEMA Standard 550 flowability ratings for granular materials. Powder Handl Proc. 2002;14(3):218–20.

    Google Scholar 

  36. Behera S, Das S, Hatvani Z, Pahl MH. Flowability studies of bulk materials for design of hopper using a Jenike shear cell. Powder Handl Proc. 2002;14(2):96–101.

    CAS  Google Scholar 

  37. Juliano P, Muhunthan B, Gustavo VB. Flow and shear descriptors of preconsolidated food powders. J Food Eng. 2006;72:157–66.

    Article  Google Scholar 

  38. Fernandes RVB, Borges SV, Botrel DA. Influence of spray drying operating conditions on microencapsulated rosemary essential oil properties. Ciênc Tecnol Aliment Campinas. 2013;33(1):171–8.

    Article  Google Scholar 

  39. Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud Peyrat-Maillard MN, Dumoulin E. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng. 2008;75(1):27–35.

    Article  Google Scholar 

  40. Quispe-Condori S, Saldaña MDA, Temelli F. Microencapsulation of flax oil with zein using spray and freeze drying. LWT Food Sci Technol. 2011;44(9):1880–7.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the Ministry of Science, Technology and Innovation Malaysia and Research Management Centre, UTM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ida Idayu Muhamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamad, S.N.H., Muhamad, I.I., Khairuddin, N. et al. Stability study of α-toc/β-CD powders obtained by microwave heating and encapsulation process. J Therm Anal Calorim 130, 1473–1480 (2017). https://doi.org/10.1007/s10973-017-6526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6526-7

Keywords

Navigation