Skip to main content
Log in

Thermal analysis of heat-treated silver fir wood and larval frass

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Among the widespread pests belongs Hylotrupes bajulus, which attacks mostly wooden beams in the roof of the houses. Heat sterilisation of wood is used to kill all forms of pests (eggs, larvae, adults) in solid wood materials. We compared thermal stability of heat sterilised silver fir wood to larval frass in regard to fire safety. The samples were treated at 60 and 120 °C for 10 h. Methods of chemical analysis, thermal analysis and statistical analysis were used. During the heat sterilisation of silver fir wood, only the amount of hemicelluloses decreased significantly. In larval frass samples, the holocellulose fraction decreased during the heat treatment. The hemicellulose yields in the larval frass samples were about 12% lower in average than in the wood samples. The major thermal degradation started at lower temperatures for untreated samples than for the heat-treated samples for both, silver fir wood and larval frass. Therefore, heat sterilisation does not deteriorate fire safety of wooden parts of buildings and can be used without significant alteration of the wood composition and properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kubš J, Gašparík M, Gaff M, Kaplan L, Čekovská H, Ježek J, Štícha V. Influence of thermal treatment on power consumption during plain milling of lodgepole pine (Pinus contorta subsp. murrayana). BioResources. 2016;12(1):407–18.

    Google Scholar 

  2. Esteves BM, Pereira HM. Wood modification by heat treatment: a review. BioResources. 2009;4(1):370–404.

    CAS  Google Scholar 

  3. Boonstra M. A two-stage thermal modification of wood. Nancy: Ghent University and Université Henry Poincaré; 2008.

    Google Scholar 

  4. Candelier K, Thevenon M-F, Petrissans A, Dumarcay S, Gerardin P, Petrissans M. Control of wood thermal treatment and its effects on decay resistance: a review. Ann For Sci. 2016;. doi:10.1007/s13595-016-0541-x.

    Google Scholar 

  5. Wang X. Heat sterilization of wood. In: Ross RJ, editor. Wood handbook—wood as an engineering material. Madison: U. S. Department of Agriculture, Forest Service, Forest Products Laboratory; 2010. p. 20-1–20-13.

    Google Scholar 

  6. Kacik F, Vel’kova V, Smira P, Nasswettrova A, Kacikova D, Reinprecht L. Release of terpenes from fir wood during its long-term use and in thermal treatment. Molecules. 2012;17(8):9990–9. doi:10.3390/molecules17089990.

    Article  CAS  Google Scholar 

  7. Kacik F, Smira P, Kacikova D, Vel’kova V, Nasswettrova A, Vacek V. Chemical alterations of pine wood saccharides during heat sterilisation. Carbohyd Polym. 2015;117:681–6. doi:10.1016/j.carbpol.2014.10.065.

    Article  CAS  Google Scholar 

  8. Kacik F, Luptakova J, Smira P, Nasswettrova A, Kacikova D, Vacek V. Chemical alterations of pine wood lignin during heat sterilization. BioResources. 2016;11(2):3442–52. doi:10.15376/biores.11.2.3442-3452.

    Article  CAS  Google Scholar 

  9. Martinka J, Kacikova D, Hroncova E, Ladomersky J. Experimental determination of the effect of temperature and oxygen concentration on the production of birch wood main fire emissions. J Therm Anal Calorim. 2012;110(1):193–8. doi:10.1007/s10973-012-2261-2.

    Article  CAS  Google Scholar 

  10. Fettkother R, Reddy GVP, Noldt U, Dettner K. Effect of host and larval frass volatiles on behavioural response of the old house borer, Hylotrupes bajulus (L.) (Coleoptera: Cerambycidae), in a wind tunnel bioassay. Chemoecology. 2000;10(1):1–10. doi:10.1007/s000490050001.

    Article  CAS  Google Scholar 

  11. Chiappini E, Molinari P, Busconi M. Hylotrupes bajulus (L.) (Col., Cerambycidae): nutrition and attacked material. In: Carvalho MO, Fields PG, Adler CS, editors. Proceedings of the 10th international working conference on stored-product protection location. Estoril: Julius-Kuhn-Archiv; 2010. p. 97–103.

  12. Busconi M, Berzolla A, Chiappini E. Preliminary data on cellulase encoding genes in the xylophagous beetle, Hylotrupes bajulus (Linnaeus). Int Biodeterior Biodegradation. 2014;86:92–5. doi:10.1016/j.ibiod.2013.09.009.

    Article  CAS  Google Scholar 

  13. Jablonsky M, Smatko L, Botkova M, Tino R, Sima J. Modification of wood wettability (european beech) by diffuse coplanar surface barrier discharge plasma. Cellul Chem Technol. 2016;50(1):41–8.

    CAS  Google Scholar 

  14. Kang S-G, Choi C, Lee C-G, Son D-W, Yang J-K, Kang C-W, et al. A study of the heating and energy efficiency of thermally-modified firewood. J Fac Agric Kyushu Univ. 2015;60(1):197–201.

    CAS  Google Scholar 

  15. Ke J, Laskar DD, Chen S. Biodegradation of hardwood Lignocellulosics by the western poplar clearwing borer, Paranthrene robiniae (Hy. Edwards). Biomacromolecules. 2011;12:1610–20. doi:10.1021/bm2000132.

    Article  CAS  Google Scholar 

  16. Carrier M, Loppinet-Serani A, Denux D, Lasnier J-M, Ham-Pichavant F, Cansell F, et al. Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy. 2011;35(1):298–307. doi:10.1016/j.biombioe.2010.08.067.

    Article  CAS  Google Scholar 

  17. ASTM D1107-96 A. Standard test method for ethanol-toluene solubility of wood. West Conshohocken: ASTM International; 2013.

    Google Scholar 

  18. ASTM D1107-96 A. Standard test method for acid-insoluble lignin in wood. West Conshohocken: ASTM International; 2013.

    Google Scholar 

  19. Wise LE, Murphy M, D´Addieco AA. Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicelluloses. Paper Trade J. 1946;122(3):35–43.

    CAS  Google Scholar 

  20. Seifert K. Uber ein neues Verfahren zur Schnellbestimmung der Rein-Cellulose. Das Papier. 1956;10(13–14):301–6.

    CAS  Google Scholar 

  21. Francisco-Fernandez M, Tarrio-Saavedra J, Naya S, Lopez-Beceiro J, Artiaga R. Classification of wood using differential thermogravimetric analysis. J Therm Anal Calorim. 2015;120(1):541–51. doi:10.1007/s10973-014-4260-y.

    Article  CAS  Google Scholar 

  22. Korošec RC, Lavrič B, Rep G, Pohleven F, Bukovec P. Thermogravimetry as a possible tool for determining modification degree of thermally treated Norway spruce wood. J Therm Anal Calorim. 2009;98:189–95. doi:10.1007/s10973-009-0374-z.

    Article  Google Scholar 

  23. Gao M, Sun CY, Wang CX. Thermal degradation of wood treated with flame retardants. J Therm Anal Calorim. 2006;85(3):765–9. doi:10.1007/s10973-005-7225-3.

    Article  CAS  Google Scholar 

  24. Yorulmaz SY, Atimtay AT. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process Technol. 2009;90(7–8):939–46. doi:10.1016/j.fuproc.2009.02.010.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the VEGA agency of the Ministry of Education, Science, Research, and Sport of the Slovak Republic (No. 1/0521/15) (50%) and by the Slovak Research and Development Agency under contract No. APVV-0057-12 (50%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to František Kačík.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kačík, F., Luptáková, J., Šmíra, P. et al. Thermal analysis of heat-treated silver fir wood and larval frass. J Therm Anal Calorim 130, 755–762 (2017). https://doi.org/10.1007/s10973-017-6463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6463-5

Keywords

Navigation