Skip to main content
Log in

Catalytic reforming of tar using corncob char and char-supported potassium catalysts

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work aims to investigate the importance of biomass char and the metal oxides in the ash in tar cracking during the volatile–char interactions. Experiments were carried out in a two-stage fixed reactor, and corncob, one typical agricultural biomass rich in potassium, was chosen as raw material. Results showed that char and char-supported potassium catalysts have good activity for tar elimination due to the good absorbability of char and catalytic property of potassium. In particular, tar conversion efficiency can reach 95.8% by using 1.5 K-char catalyst at 700 °C. The reforming reactions can be significantly enhanced during the volatile–char interactions in the presence of char and char-supported potassium catalysts. As a result, the syngas yield increased significantly with increasing temperature and supported K+, particularly the combustible gases including H2, CO and CH4. Physical and chemical structure of char changed due to reforming reactions related to the carbon, while the content of potassium was almost unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Oliveira TJP, Cardoso CR, Ataide CH. Fast pyrolysis of soybean hulls: analysis of bio-oil produced in a fluidized bed reactor and of vapor obtained in analytical pyrolysis. J Therm Anal Calorim. 2015;120(1):427–38.

    Article  CAS  Google Scholar 

  2. Anis S, Zainal ZA. Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: a review. Renew Sustain Energy Rev. 2011;15(5):2355–77.

    Article  CAS  Google Scholar 

  3. Kaminska-Pietrzak N, Howaniec N, Smolinski A. The influence of feedstock type and operating parameters on tar formation in the process of gasification and co-gasification. Ecol Chem Eng S. 2013;20(4):747–61.

    CAS  Google Scholar 

  4. Abu El-Rub Z, Bramer EA, Brem G. Review of catalysts for tar elimination in biomass gasification processes. Ind Eng Chem Res. 2004;43(22):6911–9.

    Article  CAS  Google Scholar 

  5. Schmidt S, Giesa S, Drochner A, Vogel H. Catalytic tar removal from bio syngas-catalyst development and kinetic studies. Catal Today. 2011;175(1):442–9.

    Article  CAS  Google Scholar 

  6. Berrueco C, Montane D, Guell BM, del Alamo G. Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed. Energy. 2014;66:849–59.

    Article  CAS  Google Scholar 

  7. Cheng XH, He XM, Chen C, Yi S. Influence of Fe2O3/CaO catalysts on the pyrolysis products of low-rank Coal. Energy Technol. 2015;3(10):1068–71.

    Article  CAS  Google Scholar 

  8. Cheah S, Gaston KR, Parent YO, Jarvis MW, Vinzant TB, Smith KM, et al. Nickel cerium olivine catalyst for catalytic gasification of biomass. Appl Catal B Environ. 2013;134:34–45.

    Article  Google Scholar 

  9. Zhang YL, Wu WG, Zhao SH, Long YF, Luo YH. Experimental study on pyrolysis tar removal over rice straw char and inner pore structure evolution of char. Fuel Process Technol. 2015;134:333–44.

    Article  CAS  Google Scholar 

  10. Min ZH, Yimsiri P, Asadullah M, Zhang S, Li CZ. Catalytic reforming of tar during gasification. Part II. Char as a catalyst or as a catalyst support for tar reforming. Fuel. 2011;90(7):2545–52.

    Article  CAS  Google Scholar 

  11. Shen YF, Zhao PT, Shao QF, Takahashi F, Yoshikawa K. In situ catalytic conversion of tar using rice husk char/ash supported nickel-iron catalysts for biomass pyrolytic gasification combined with the mixing-simulation in fluidized-bed gasifier. Appl Energy. 2015;160:808–19.

    Article  CAS  Google Scholar 

  12. Zhang SP, Dong Q, Zhang L, Xiong YQ. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts. Bioresour Technol. 2015;191:17–23.

    Article  CAS  Google Scholar 

  13. Zhang S, Asadullah M, Dong L, Tay HL, Li CZ. An advanced biomass gasification technology with integrated catalytic hot gas cleaning. Part II: tar reforming using char as a catalyst or as a catalyst support. Fuel. 2013;112:646–53.

    Article  CAS  Google Scholar 

  14. Formella KLP, Sulimma A, van Heek KH, Jüntgen H. Interaction of mineral matter in coal with potassium during gasification. Fuel. 1986;65:1470–2.

    Article  CAS  Google Scholar 

  15. Tsai WT, Chang CY, Lee SL, Wang SY. Thermogravimetric analysis of corn cob impregnated with zinc chloride for preparation of activated carbon. J Therm Anal Calorim. 2001;63(2):351–7.

    Article  CAS  Google Scholar 

  16. Trninic M, Wang L, Varhegyi G, Gronli M, Skreiberg O. Kinetics of corncob pyrolysis. Energy Fuel. 2012;26(4):2005–13.

    Article  CAS  Google Scholar 

  17. Amjv G. Cellulose pyrolysis kinetics: the current state knowledge. Ind Eng Chem Res. 1995;34(3):703–17.

    Article  Google Scholar 

  18. Skreiberg A, Skreiberg O, Sandquist J, Sorum L. TGA and macro-TGA characterisation of biomass fuels and fuel mixtures. Fuel. 2011;90(6):2182–97.

    Article  CAS  Google Scholar 

  19. Dufour A, Girods P, Masson E, Rogaume Y, Zoulalian A. Synthesis gas production by biomass pyrolysis: effect of reactor temperature on product distribution. Int J Hydrog Energy. 2009;34(4):1726–34.

    Article  CAS  Google Scholar 

  20. Ates F, Isikdag MA. Influence of temperature and alumina catalyst on pyrolysis of corncob. Fuel. 2009;88(10):1991–7.

    Article  CAS  Google Scholar 

  21. Tseng RL, Tseng SK. Pore structure and adsorption performance of the KOH-activated carbons prepared from corncob. J Colloid Interface Sci. 2005;287(2):428–37.

    Article  CAS  Google Scholar 

  22. Shen YF, Yoshikawa K. Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew Sustain Energy Rev. 2013;21:371–92.

    Article  CAS  Google Scholar 

  23. Wang D, Yuan WQ, Ji W. Char and char-supported nickel catalysts for secondary syngas cleanup and conditioning. Appl Energy. 2011;88(5):1656–63.

    Article  CAS  Google Scholar 

  24. Gilbert P, Ryu C, Sharifi V, Swithenbank J. Tar reduction in pyrolysis vapours from biomass over a hot char bed. Bioresour Technol. 2009;100(23):6045–51.

    Article  CAS  Google Scholar 

  25. Zielinska A, Oleszczuk P, Charmas B, Skubiszewska-Zieba J, Pasieczna-Patkowska S. Effect of sewage sludge properties on the biochar characteristic. J Anal Appl Pyrol. 2015;112:201–13.

    Article  CAS  Google Scholar 

  26. Krerkkaiwan S, Mueangta S, Thammarat P, Jaisat L, Kuchonthara P. Catalytic biomass-derived tar decomposition using char from the co-pyrolysis of coal and giant leucaena wood biomass. Energy Fuel. 2015;29(5):3119–26.

    Article  CAS  Google Scholar 

  27. Shen YF, Zhao PT, Shao QF, Ma DC, Takahashi F, Yoshikawa K. In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl Catal B Environ. 2014;152:140–51.

    Article  Google Scholar 

  28. Lolja SA, Haxhi H, Dhimitri R, Drushku S, Malja A. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel. 2002;81(17):2257–61.

    Article  CAS  Google Scholar 

  29. Seo MW, Goo JH, Kim SD, Lee SH, Choi YC. Gasification characteristics of coal/biomass blend in a dual circulating fluidized bed reactor. Energy Fuel. 2010;24:3108–18.

    Article  CAS  Google Scholar 

  30. Kim YJ, Lee SH, Kim SD. Coal gasification characteristics in a downer reactor. Fuel. 2001;80(13):1915–22.

    Article  CAS  Google Scholar 

  31. Kim YJ, Lee JM, Kim SD. Modeling of coal gasification in an internally circulating fluidized bed reactor with draught tube. Fuel. 2000;79(1):69–77.

    Article  CAS  Google Scholar 

  32. Li CS, Hirabayashi D, Suzuki K. Development of new nickel based catalyst for biomass tar steam reforming producing H2-rich syngas. Fuel Process Technol. 2009;90(6):790–6.

    Article  CAS  Google Scholar 

  33. Taba LE, Irfan MF, Daud WAMW, Chakrabarti MH. The effect of temperature on various parameters in coal, biomass and co-gasification: a review. Renew Sustain Energy Rev. 2012;16(8):5584–96.

    Article  Google Scholar 

  34. El-Rub ZA, Bramer EA, Brem G. Experimental comparison of biomass chars with other catalysts for tar reduction. Fuel. 2008;87(10–11):2243–52.

    Article  Google Scholar 

  35. Kunkes EL, Simonetti DA, West RM, Serrano-Ruiz JC, Gartner CA, Dumesic JA. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science. 2008;322(5900):417–21.

    Article  CAS  Google Scholar 

  36. Ma MS, Muller M. Investigation of various catalysts for partial oxidation of tar from biomass gasification. Appl Catal A Gen. 2015;493:121–8.

    Article  CAS  Google Scholar 

  37. Hu S, Xiang J, Sun LS, Xu MH, Qiu JR, Fu P. Characterization of char from rapid pyrolysis of rice husk. Fuel Process Technol. 2008;89(11):1096–105.

    Article  CAS  Google Scholar 

  38. Bermudez JM, Arenillas A, Menendez JA. Syngas from CO2 reforming of coke oven gas: synergetic effect of activated carbon/Ni-gamma Al2O3 catalyst. Int J Hydrog Energy. 2011;36(21):13361–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51406226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feiqiang Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Liu, Y., Liu, Y. et al. Catalytic reforming of tar using corncob char and char-supported potassium catalysts. J Therm Anal Calorim 130, 1297–1306 (2017). https://doi.org/10.1007/s10973-017-6420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6420-3

Keywords

Navigation