Skip to main content
Log in

Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Kinetic analysis of the non-isothermal degradation of poly(ethylene oxide) has been performed using isoconversional model-free methods, model-fitting methods, invariant kinetic parameters method and Netzsch Thermokinetics software in order to establish whether different kinetic approaches yield consistent kinetic parameters. It has been shown that these approaches yield consistent kinetic parameters and can be combined in such a way as to enhance the reliability and quality of each other and consequently the overall kinetic analysis. The most probable kinetic parameters for the non-isothermal degradation of poly(ethylene oxide) have been determined. These kinetic parameters have been used for prediction of isothermal kinetics of poly(ethylene oxide), and their potential for reliable prediction has been noticed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

  2. Vyazovkin S, Sbirrazzuoli N. Isoconversional kinetic of thermally stimulated processes. Cham: Springer; 2015. p. 9–10.

    Google Scholar 

  3. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand. 1966;70A:487–523.

    Article  Google Scholar 

  4. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–9.

    Article  CAS  Google Scholar 

  5. Friedman HL. Kinetic of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic resin. J Polym Sci Part C. 1963;6:183–95.

    Article  Google Scholar 

  6. Kissinger HE. Reaction kinetic in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  7. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Rep Chiba Inst Technol (Sci Technol). 1971;16:22–31.

    Google Scholar 

  8. Vyazovkin S. Advanced isoconversional method. J Therm Anal. 1997;49:1991–9.

    Article  Google Scholar 

  9. Li CR, Tang TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325:43–6.

    Article  CAS  Google Scholar 

  10. Vyazovkin S. A unified approach to kinetic processing in nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    Article  CAS  Google Scholar 

  11. Málek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.

    Article  Google Scholar 

  12. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  13. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    Article  CAS  Google Scholar 

  14. Chrissafis K. Kinetic of thermal degradation of polymers. Complementary use of isoconversional and model-fitting methods. J Therm Anal Calorim. 2009;95:273–83.

    Article  CAS  Google Scholar 

  15. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J, Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB, Roduit B, Malek J, Mitsuhashi T. Computational aspects of kinetic analysis: part A: the ICTAC kinetics project-data, methods and results. Thermochim Acta. 2000;355:125–43.

    Article  CAS  Google Scholar 

  16. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2001;115:1780–91.

    Article  Google Scholar 

  17. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    Article  CAS  Google Scholar 

  18. Rotaru A, Gosa M, Rotaru P. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet from non-isothermal data. J Therm Anal Calorim. 2009;97:421–6.

    Article  CAS  Google Scholar 

  19. Stipanelov Vrandečić N, Erceg M, Jakić M, Klarić I. Kinetic analysis of thermal degradation of poly(ethylene glycol) and poly(ethylene oxide)s of different molecular weight. Thermochim Acta. 2010;498:71–80.

    Article  Google Scholar 

  20. Pielichowski K, Flejtuch K. Non-oxidative thermal degradation of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrolysis. 2005;73:131–8.

    Article  CAS  Google Scholar 

  21. Manoratne CH, Rajapakse RMG, Dissanayake MAKL. Ionic conductivity of poly(ethylene oxide) (PEO)-montmorillonite nanocomposites prepared by intercalation from aqueous medium. Int J Electrochem Sci. 2006;1:32–46.

    CAS  Google Scholar 

  22. Liao C-S, Ye W-B. Enhanced ionic conductivity in poly(ethylene oxide)/layered double hydroxide nanocomposites electrolytes. J Polym Res. 2003;10:241–6.

    Article  CAS  Google Scholar 

  23. Chen H-W, Chang F-C. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer. 2001;42:9763–9.

    Article  CAS  Google Scholar 

  24. Quartatone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes. Solid State Ion. 1998;110:1–14.

    Article  Google Scholar 

  25. Jhang WC, Chen WC, Wang YW, Chang RH, Shu CM. Thermal stability evaluation of lithium-ion polymer batteries. J Therm Anal Calorim. 2015;122:1099–105.

    Article  CAS  Google Scholar 

  26. Pielichowska K, Głowinkowskib S, Lekkic J, Biniaśd D, Pielichowskia K, Jenczykb J. PEO/fatty acid blends for thermal energy storage materials. Structural/morphological features and hydrogen interactions. Eur Polym J. 2008;44:3344–60.

    Article  CAS  Google Scholar 

  27. Fu X, Zhang Y, Kong W, Chen X, Wang J, Zhou C, Lei J. Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5959-8z.

    Google Scholar 

  28. Budrugeac P, Segal E. Some methodological problems concerning nonisothermal kinetic analysis of heterogeneous solid–gas reactions. Int J Chem Kinet. 2001;33:564–73.

    Article  CAS  Google Scholar 

  29. Pérez-Maqueda LA, Criado LM, Gotor FJ, Malek J. Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A. 2002;106:2862–8.

    Article  Google Scholar 

  30. Netzsch Thermokinetics Software Manual, Selb: Netzsch-Gerätebau GmbH; 2014.

  31. Opfermann J. Kinetic analysis using multivariate non-linear regression: I. Basic concepts. J Therm Anal Calorim. 2000;60:641–58.

    Article  CAS  Google Scholar 

  32. Madorsky SL, Strauss S. Thermal degradation of polyethylene oxide and polypropylene oxide. J Polym Sci. 1959;36:183–94.

    Article  CAS  Google Scholar 

  33. Audebert R, Aubineau C. Etude par thermogravimetrie dynamique de la degradation thermique des polymeres. Eur Polym J. 1970;6:965–79.

    Article  CAS  Google Scholar 

  34. Calahorra E, Cortezar M, Guzman GM. Thermal decomposition of poly(ethylene oxide), poly(methyl methacrylate) and their mixtures by thermogravimetric method. J Polym Sci B. 1985;23:257–60.

    CAS  Google Scholar 

  35. Wang FY, Ma CCM, Wu WJ. Kinetic parameters of thermal degradation of polyethylene glycol-toughened novolac-type phenolic resin. J Appl Polym Sci. 2001;80:188–96.

    Article  CAS  Google Scholar 

  36. Barbadillo F, Mier JL, Artiaga R, Losada R, Garcia L. In: Proceedings of the 8th European symposium on thermal analysis and calorimetry: ESTAC 8, August 25–29, 2002, Barcelona, Spain. Budapest: Akadémiai Kiadó; 2002. p. 75.

  37. Erceg M, Krešić I, Jakić M, Andričić B. Kinetic analysis of poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2016. doi:10.1007/s10973-016-5413-y.

    Google Scholar 

  38. Jakić M, Stipanelov Vrandečić N, Erceg M. Kinetic analysis of the non-isothermal degradation of poly(vinyl chloride)/poly(ethylene oxide) blends. J Therm Anal Calorim. 2016;123:1513–22.

    Article  Google Scholar 

  39. Jakić M, Stipanelov Vrandečić N, Erceg M. Thermal degradation of poly(3-hydroxybutyrate)/poly(ethylene oxide) blends: thermogravimetric and kinetic analysis. Eur Polym J. 2016;81:376–85.

    Article  Google Scholar 

  40. Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejon A, Criado JM. Limitations of model-fitting methods for kinetic analysis: polystyrene thermal degradation. Resour Conserv Recyl. 2013;74:75–81.

    Article  Google Scholar 

  41. Pérez-Maqueda LA, Criado JM, Sánchez-Jiménez PE. Combined kinetic analysis of solid-state reactions: a powerful tool for the simultaneous determination of kinetic parameters and the kinetic model without previous assumptions on the reaction mechanism. J Phys Chem A. 2006;110:12456–62.

    Article  Google Scholar 

  42. Rotaru A. Discriminating within the kinetic models for heterogeneous processes of materials by employing a combined procedure under TKS-SP 2.0 software. J Therm Anal Calorim. 2016;126(2):919–32.

    Article  CAS  Google Scholar 

  43. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340–341:53–68.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matko Erceg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erceg, M., Krešić, I., Vrandečić, N.S. et al. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim 131, 325–334 (2018). https://doi.org/10.1007/s10973-017-6349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6349-6

Keywords

Navigation