Skip to main content
Log in

Thermal analysis in biological and medical applications

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, I will sum up our research activity from this field performed in the last about 25 years. I will focus on three main points: basic muscle research in the different intermediate states of ATP hydrolysis cycle during muscle contraction, R&D activities to develop and test different dairy products and TA application in some surgical and diagnostic problem. Our initial research concerned the investigation of thermal stability of main muscle proteins clarifies their basic unfolding characteristics. Later we extended the thermal stability investigation from protein solution to the myosin myofibrils and to the higher organization of muscle proteins, the muscle fibres, checking the effect of nucleotides. At that time, it became possible to stabilize the different intermediate states of ATP hydrolysis up to the time of DSC measurement, using different Pi analogues (Vi, AlFx and BeFx) and non-hydrolysable ATP analogue (AMP.PNP). This way the targets were AM.ADP.Vi (and with AlFx or BeFx) so-called weak binding state, AM.ADP the “strong” binding state as well as the “rigor” AM complex state. AM.AMP.PNP state was used to mimic the AM.ATP state. With our R&D cooperation, a cold spreadable butter was successfully developed. We were a partner in the development of Ca-enriched cheese, in its spreadable form too as well as in the development and testing of different dairy products using probiotic cultures. Our TA activity covers a wide range of medical applications, e.g. investigation of the different abnormalities of human leg skeletal muscle, different stages of degeneration of human vertebral disc, to judge the goodness/applicability of different suture technique on tracheal cartilage in primary airway reconstruction or the characterization of different self-expandable stents implantation in the oesophagus treatment. We have joined those groups who try to use DSC in the diagnosis of different diseases from blood plasma, e.g. in the case of breast cancer, melanoma, in psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Watson ES, O’Neill MJ, Justin J, Brenner N. A differential scanning calorimeter for quantitative differential thermal analysis. Anal Chem. 1964;36:1233–8.

    Article  CAS  Google Scholar 

  2. Privalov PL. Manifestation of water structure in thermal denaturation of macromolecules. In: Kayushin LP, editor. Water in biological systems. New York: Consultants Bureau; 1969. p. 38–41.

    Google Scholar 

  3. Mrevlishvili GM, Privalov PL. Calorimetric investigation of macromolecular hydration. In: Kayushin LP, editor. Water in biological systems. New York: Consultants Bureau; 1969. p. 63–6.

    Google Scholar 

  4. Andronikashvili EL, Mrevlishvili GM, Privalov PL. Calorimetric investigation of the state of tissue water. In: Kayushin LP, editor. Water in biological systems. New York: Consultants Bureau; 1969. p. 67–9.

    Google Scholar 

  5. Privalov PL, Ptitsyn OB. Determination of stability of the DNA double helix in aqueous medium. Biopolymers. 1969;8:559–71.

    Article  CAS  Google Scholar 

  6. Privalov PL, Khechinashvili NN. A thermodynamic approach to the problem of stabilization of globular protein structure: a calorimetric study. J Mol Biol. 1974;86:665–84.

    Article  CAS  Google Scholar 

  7. Privalov PL. Thermal investigations of biopolymer solutions and scanning calorimetry. FEBS Lett. 1974;40:S140–53.

    Article  Google Scholar 

  8. Privalov PL, Filimonov VV, Venkstern TV, Bayev AA. A calorimetric investigation of tRNA Val1 melting. J Mol Biol. 1975;97:279–88.

    Article  CAS  Google Scholar 

  9. Privalov PL, Plotnikov VV, Filimonov VV. Precision scanning microcalorimeter for study of liquids. J Chem Thermodyn. 1975;7:41–7.

    Article  CAS  Google Scholar 

  10. Potekhin SA, Privalov PL. Cooperative blocks in tropomyosin. J Mol Biol. 1982;159:519–35.

    Article  CAS  Google Scholar 

  11. Privalov PL. Stability of proteins. Proteins which do not present a single cooperative system. Adv Prot Chem. 1982;35:1–104.

    Article  CAS  Google Scholar 

  12. Privalov PL, Potekhin SA. Scanning microcalorimetry in studying temperature-induced changes in proteins. Methods Enzymol. 1986;131:4–51.

    Article  CAS  Google Scholar 

  13. Bertazzon A, Tian GH, Tsong TY. Differential scanning calorimetric (DSC) study of thermal unfolding of myosin and its subfragments in several forms of assemblies. Biophys J. 1988;53:236a.

    Google Scholar 

  14. Bertazzon A, Tian GH, Lamblin A, Tsong TY. Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry. 1990;29:291–8.

    Article  CAS  Google Scholar 

  15. Bertazzon A, Tsong TY. Study of effects of pH on the stability of domains in myosinrod by high-resolution differential scanning calorimetry. Biochemistry. 1990;29:6453–9.

    Article  CAS  Google Scholar 

  16. Levitsky DI. Study of thermal denaturation of the rod part of myosin molecule by microcalorimetry and intrinsic fluorescence methods. Biofizika. 1990;35:415–20.

    Google Scholar 

  17. Lőrinczi D, Hoffmann U, Pótó L, Belágyi J, Laggner P. Conformational changes in bovine heart myosin as studied by EPR and DSC techniques. Gen Physiol Biophys. 1990;9:589–603.

    Google Scholar 

  18. Geeves MA. The dynamics of actin and myosin association and the crossbridge model of muscle contraction. Biochem J. 1991;274:1–14.

    Article  CAS  Google Scholar 

  19. Holmes KC. A molecular model for muscle contraction. Acta Crystallogr A. 1998;54:789–97.

    Article  CAS  Google Scholar 

  20. Holmes KC. A powerful stroke. Nat Struct Biol. 1998;5:940–2.

    Article  CAS  Google Scholar 

  21. Geeves MA, Holmes KC. Structural mechanism of muscle contraction. Ann Rev Biochem. 1999;68:687–728.

    Article  CAS  Google Scholar 

  22. Rayment I, Holden HM, Whittaker M, Yohn CB, Lorenz M, Holmes KC, Milligan RA. Structure of the actin–myosin complex and its implications for muscle contraction. Science. 1993;261:58–65.

    Article  CAS  Google Scholar 

  23. Dominguez R, Freyzon Y, Trybus KM, Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998;94:659–71.

    Article  Google Scholar 

  24. Fisher AJ, Smith CA, Thoden J, Smith R, Sutoh K, Holden HM, Rayment I. Structural studies of myosin: nucleotide complexes: a revised model for the molecular basis of muscle contraction. Biophys J. 1995;68:19s–28s.

    CAS  Google Scholar 

  25. Fisher AJ, Smith CA, Thoden J, Smith R, Sutoh K, Holden HM, Rayment I. X-ray structures of the myosin motor domain of Dictyostellium discoideum complexed with MgADP.BeFx and MgADP.AlF4. Biochemistry. 1995;34:8960–72.

    Article  CAS  Google Scholar 

  26. Pate E, Naber N, Matuska M, Franks-Skiba K, Cooke R. Opening of the myosin nucleotide triphosphate binding domain during the ATP cycle. Biochemistry. 1997;36:12155–66.

    Article  CAS  Google Scholar 

  27. Bagshaw CR, Trentham DR. The characterization of myosin-product complexes and of product release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J. 1974;141:331–49.

    Article  CAS  Google Scholar 

  28. Stone T, Buckman T, Nordio P, McConnell H. Spin-labeled biomolecules. Proc Natl Acad Sci. 1965;54:1010–7.

    Article  CAS  Google Scholar 

  29. Thomas DD. Spectroscopic probes of muscle cross-bridge rotation. Am Rev Physiol. 1987;49:691–709.

    Article  CAS  Google Scholar 

  30. Fajer P. Electron spin resonance spectroscopy labeling in protein analysis. In: Meyers RA, editor. Encyclopedia of analytical chemistry. Wiley; 2000. p. 5725–61.

  31. Sturtevant JM. Biochemical applications of differential scanning calorimetry. Ann Rev Phys Chem. 1987;38:463–88.

    Article  CAS  Google Scholar 

  32. Zolkiewski M, Redowicz MJ, Korn ED, Ginsburg A. Thermal unfolding of Acanthamoeba myosin II and skeletal muscle myosin. Biophys Chem. 1996;59:365–71.

    Article  CAS  Google Scholar 

  33. Lőrinczy D, Hartvig N, Belagyi J. Analysis of nucleotide myosin complexes in skeletal muscle fibres by DSC. Muscle Res Cell Motil. 2001;22:588.

    Google Scholar 

  34. Banga I, Szent-Györgyi A. Preparation and properties of myosin A and B. Studies 1941/1942;1:5–14.

  35. Straub FB. Actin. Studies. 1942;2(3–1):5.

    Google Scholar 

  36. Straub FB. Actin II. Studies. 1943;3(23–3):7.

    Google Scholar 

  37. Tatunashvili LV, Privalov PL. Calorimetric investigation of G-actin denaturation. Biofizika. 1984;29:583–5.

    CAS  Google Scholar 

  38. Holmes KC, Popp D, Gebhard W, Kabsch W. Atomic model of the actin filament. Nature. 1990;347:44–9.

    Article  CAS  Google Scholar 

  39. Le Bihan T, Gicquaud C. Kinetic study of thermal denaturation of G-actin using differential scanning calorimetry and intrinsic fluorescence spectroscopy. Biochem Biophys Res Commun. 1993;194:1065–73.

    Article  Google Scholar 

  40. Lumry R, Eyring H. Conformation changes of proteins. J Phys Chem. 1954;58:110–20.

    Article  CAS  Google Scholar 

  41. Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL. Differential scanning calori-metry of the irreversible thermal denaturation of thermolysin. Biochemistry. 1988;27:1648–52.

    Article  CAS  Google Scholar 

  42. Conjero-Lara F, Mateo PL, Aviles FX, Sanchez-Ruiz JM. Effect of Zn2+ on the thermal denaturation of carboxypeptidase B. Biochemistry. 1991;30:2067–72.

    Article  Google Scholar 

  43. Vogl T, Jatzke C, Hinz H-J, Benz J, Huber R. Thermodynamic stability of annexin V E17G: equilibrium parameters from an irreversible unfolding reaction. Biochemistry. 1997;36:1657–68.

    Article  CAS  Google Scholar 

  44. Thorolfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martinez A. L-Phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential scanning calorimetry study. Biochemistry. 2002;41:7573–85.

    Article  CAS  Google Scholar 

  45. Lőrinczy D, Belagyi J. Scanning calorimetric and EPR studies on the thermal stability of actin. Thermochim Acta. 1995;259:153–64.

    Article  Google Scholar 

  46. Lőrinczy D, Könczöl F, Gaszner B, Belagyi J. Structural stability of actin as studied by DSC and EPR. Thermochim Acta. 1998;322:95–100.

    Article  Google Scholar 

  47. Kabsch W, Holmes KC. The actin fold. FASEB J. 1995;9(167–7):4.

    Google Scholar 

  48. Engelhardt WA, Ljubimova MM. Myosin and adenosine-triphosphatase. Nature. 1939;144:668.

    Article  CAS  Google Scholar 

  49. Szent-Györgyi A. The contraction of myosin threads. Studies 1941/1942;1:17–26.

  50. Szent-Györgyi A. Chemistry of muscular contraction. New York: Academic Press; 1951.

    Google Scholar 

  51. Shriver JW, Kamath U. Differential scanning calorimetry of the unfolding of myosin subfragment-1, subfragment-2, and heavy meromyosin. Biochemistry. 1990;29:2556–64.

    Article  CAS  Google Scholar 

  52. Lymn RW, Taylor EW. Mechanism of adenosine triphosphate hydrolysis of actomyosin. Biochemistry. 1971;10:4617–24.

    Article  CAS  Google Scholar 

  53. Combeau C, Carlier M-F. Probing the mechanism of ATP hydrolysis on F-actin using vanadate and the structural analogs of phosphate BeF3 and AlF4 . J Biol Chem. 1988;263:17429–36.

    CAS  Google Scholar 

  54. Orlova A, Egelman EH. The structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis. J Mol Biol. 1992;227:1043–53.

    Article  CAS  Google Scholar 

  55. Bobkov A, Khvorov NV, Golitsina NL, Levitsky DI. Calorimetric characterization of the stable complex of myosin subfragment 1 with ADP and beryllium fluoride. FEBS Lett. 1993;332:64–6.

    Article  CAS  Google Scholar 

  56. Bobkov A, Levitsky DI. Differential scanning calrimetric study ot the complexes of myosin subfragment 1 with nucleozide diphosphates and vanadate or beryllium fluoride. Biochemistry. 1995;34(30):9708–13.

    Article  CAS  Google Scholar 

  57. Bombardier H, Wong P, Gicquaud C. Effects of nucleotides on the denaturation of F-actin: a differential scanning calorimetry and FTIR spectroscopy study. Biochem Biophys Res Commun. 1997;236:798–803.

    Article  CAS  Google Scholar 

  58. Lőrinczy D, Belágyi J. Effects of nucleotide on skeletal muscle myosin unfolding in myofibrils by DSC. Biochem Biophys Res Commun. 1995;217:592–8.

    Article  Google Scholar 

  59. Belágyi J, Lőrinczy D. Internal motions in myosin head: effect of ADP and ATP. Biochem Biophys Res Commun. 1996;219:936–40.

    Article  Google Scholar 

  60. Goodno CC. Proc Natl Acad Sci. 1979;76:2620.

    Article  CAS  Google Scholar 

  61. Phan BC, Reisler E. Inhibition of myosin ATPase by berillium fluoride. Biochemistry. 1992;31:4787–93.

    Article  CAS  Google Scholar 

  62. Werber MM, Peyser YM, Muhlrad A. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1–nucleotide complexes. Biochemistry. 1992;31:7190–7.

    Article  CAS  Google Scholar 

  63. Phan BC, Faller LD, Reisler E. Kinetic and equilibrium analysis of the interactions of actomyosin subfragment-1 ADP with beryllium fluoride. Biochemistry. 1993;32:7712–9.

    Article  CAS  Google Scholar 

  64. Lőrinczy D, Könczöl F, Farkas L, Belágyi J, Schick C. Nucleotides induced changes in muscle fibres studied by DSC and TMDSC. Thermochim Acta. 2001;377:205–10.

    Article  Google Scholar 

  65. Lőrinczy D, Hartvig N, Belágyi J. Nucleotide analogue induces global and local changes in muscle fibres. J Thermal Anal Calorim. 2001;64:651–8.

    Article  Google Scholar 

  66. Lőrinczy D, Hartvig N, Farkas N, Belágyi J. Binding of nucleotides at the active site modulates the local and global conformation of myosin in muscle fibres. J Thermal Anal Calorim. 2001;65:351–8.

    Article  Google Scholar 

  67. Lőrinczy D, Belágyi J. Nucleotide binding induces global and local structural changes of myosin head in muscle fibres. Eur J Biochem. 2001;268:5970–6.

    Article  Google Scholar 

  68. Lőrinczy D, Hartvig N, Belagyi J. Analysis of nucleotide myosin complexes in skeletal muscle fibres by DSC and EPR. J Biochem Biophys Method. 2002;53:75–87.

    Article  Google Scholar 

  69. Kiss M, Belagyi J, Lőrinczy D. Vanadate (Vi) and ADP induced domain motions in myosin head by DSC and EPR. J Thermal Anal Calorim. 2003;72:565–72.

    Article  Google Scholar 

  70. Lőrinczy D, Kiss M, Belagyi J. DSC and EPR study on AMP.PNP, BeFx and AlF4 containing nucleotide complexes. J Thermal Anal Calorim. 2003;72:573–80.

    Article  Google Scholar 

  71. Dergez T, Könczöl F, Farkas N, Belagyi J, Lőrinczy D. DSC study of glycerol-extracted muscle fibers in intermediate states of ATP hydrolysis. J Thermal Anal Calorim. 2005;80:445–9.

    Article  CAS  Google Scholar 

  72. Lőrinczy D, Belagyi J. Intermediate states of myosin head during ATP hydrolysis cycle in psoas muscle fibres by EPR and DSC (A review). J Thermal Anal Calorim. 2007;90:611–21.

    Article  Google Scholar 

  73. Dergez T, Lőrinczy D, Könczöl F, Farkas N, Belagyi J. Differential scanning calorimetry study of glycerinated rabbit psoas muscle fibres in intermediate state of ATP hydrolysis. BMC Struct Biol. 2007;7:41–50.

    Article  CAS  Google Scholar 

  74. Samejima K, Ishioroshi M, Yashui T. Scanning calorimetric studies on thermal denaturation of myosin and its subfragment. Agric Biol Chem. 1983;47:2373–80.

    CAS  Google Scholar 

  75. Levitsky DI, Shnyrov VL, Khvorov NV, Bukatina AE, Vedenkina NS, Permyakov EA, Nikolaeva OP, Poglazov BF. Effects of nucleotide binding on thermal transitions and domain structure of myosin subfragment 1. Eur J Biochem. 1992;209:829–35.

    Article  CAS  Google Scholar 

  76. Golitsina NL, Bobkov AA, Dedova IV, Pavlov DA, Nikolaeva OP, Orlov VN, Levitsky DI. Differential scanning calorimetric study of the complexes modified myosin subfragment 1 with ADP and vanadate or beryllium fluoride. J Musc Res Cell Motil. 1996;17:475–85.

    Article  CAS  Google Scholar 

  77. Visegrády B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. The effect of phalloidin and jasplaklinolide on the flexibility and thermal stability of actin filaments. FEBS Lett. 2004;565:163–6.

    Article  CAS  Google Scholar 

  78. Visegrády B, Lőrinczy D, Hild G, Somogyi B, Nyitrai M. A simple model for the cooperative stabilisation of actin filaments by phalloidin and jasplakinolide. FEBS Lett. 2005;579:6–10.

    Article  CAS  Google Scholar 

  79. Hozumi T. Structural aspects of skeletal muscle F-actin as studied by proteolytic digestion: evidence for a second nucleotide interacting site. Biochem. 1988;104:285–8.

    Article  CAS  Google Scholar 

  80. Hozumi T. Effect of divalent cation on the structure of skeletal muscle G-actin molecule. Biochem Int. 1988;16:59–67.

    CAS  Google Scholar 

  81. Hozumi T. Structural aspects of skeletal muscle G-actin as studied by tryptic digestion: effect of nucleotide. Biochem Int. 1988;17:171–8.

    CAS  Google Scholar 

  82. Carlier MF, Pantaloni D. Binding of phosphate to F-ADP-actin and role of F-ADP-Pi-actin in ATP-actin polymerization. J Biol Chem. 1988;263(2):817–25.

    CAS  Google Scholar 

  83. Orlova A, Egelman EH. A conformational change in the actin subunit can change the flexibility of the actin filament. J Mol Biol. 1993;232:334–41.

    Article  CAS  Google Scholar 

  84. Muhlrad A, Cheung P, Phan BC, Miller C, Reisler E. Dynamic properties of actin: structural changes induced by beryllium fluoride. J Biol Chem. 1994;269:11852–8.

    CAS  Google Scholar 

  85. Dancker P, Fischer S. Stabilization of actin filaments by ATP and inorganic phosphate. Z Naturforsch C. 1989;44(7–8):698–704.

    CAS  Google Scholar 

  86. Orbán J, Pozsonyi K, Szarka K, Barkó S, Bódis E, Lőrinczy D. Thermal characterisation of actin filaments prepared from ADP-actin monomers. J Thermal Anal Calorim. 2006;84:619–23.

    Article  CAS  Google Scholar 

  87. Levitsky DI, Khovorov NV, Shnyrov VL, Vedenkina NS, Permyakov EA, Poglazov BF. Domain structure of myosin subfragment-1. Selective denaturation of the 50 kDa segment. FEBS Lett. 1990;264:176–8.

    Article  CAS  Google Scholar 

  88. Lőrinczy D. Effect of nucleotides and environmental factors on the intermediate states of ATP hydrolysis cycle in skeletal muscle fibres. In: Lőrinczy D, editor. The nature of biological systems as revealed by thermal analysis. Kluwer Academic Publisher, Dordrecht; 2004. pp. 159–186.

  89. Galisteo ML, Mateo PL, Sanchez-Ruiz JM. Kinetic study on the irreversible thermal denaturation of phosphoglycerate kinase. Biochemistry. 1991;30:2061–6.

    Article  CAS  Google Scholar 

  90. Schäffer B, Lőrinczy D, Szakály S. Investigation of the effect of fat crystallization on the consistency of butter by DSC and EPR-methods. Thermal Anal. 1996;47:515–24.

    Article  Google Scholar 

  91. Schäffer B, Szakály S, Lőrinczy D, Belágyi J. Structure of butter III. Effect of modifi-cation of cream ripening and fatty acid composition on the melting properties of butter fat and the consistency of butter. Milchwissenschaft. 1999;54:82–5.

    Google Scholar 

  92. Schäffer B, Szakály S, Lőrinczy D, Belágyi J. Structure of butter IV. Effect of modifi-cation of cream ripening and fatty acid composition on the consistency of butter. Milchwissenschaft. 2000;55(3):132–5.

    Google Scholar 

  93. Schäffer B, Szakály S, Lőrinczy D, Schäffer B. Melting properties of butter fat and the consistency of butter. J Thermal Anal Calorim. 2001;64:659–69.

    Article  Google Scholar 

  94. Schäffer B, Lőrinczy D, Belágyi J. Investigation of structure of dispersion-type processed cheeses made without peptization by DSC and electron microscopic methods. J Thermal Anal Calorim. 1999;56:1211–6.

    Article  Google Scholar 

  95. Schäffer B, Szakály S, Lőrinczy D Jr, Schäffer B. Processed cheeses made with and without peptization. J Thermal Anal Calorim. 2001;64:671–9.

    Article  Google Scholar 

  96. Isolauti E, Da Costa R, Gibson G, Saavedra J. Functional foods and probiotics. J Ped Gastr Nutr. 2002;35:106–9.

    Article  Google Scholar 

  97. Metchnikoff É. Prolongation of life: optimistic studies. London: William Heinemann; 1907. p. 1–343.

    Google Scholar 

  98. Schäffer B, Keller B, Daróczi L, Lőrinczy D. Examination of growth of probiotic microbes by an isoperibolic calorimetry. J Thermal Anal Calorim. 2010;102:9–12.

    Article  CAS  Google Scholar 

  99. Schäffer B Jr, Schäffer B, Lőrinczy D. Decomposition of DSC curves of dairy products with Gaussian functions. J Thermal Anal Calorim. 2005;82:531–5.

    Article  CAS  Google Scholar 

  100. Schäffer B, Szakály S, Lőrinczy D. Examination of the growth of probiotic culture combinations by the isoperibolic batch calorimetry. Thermochim Acta. 2004;415:123–6.

    Article  CAS  Google Scholar 

  101. Gazsó I, Kránicz J, Bellyei Á, Lőrinczy D. DSC analysis of the abnormalities of human leg skeletal muscles. A preliminary study. Thermochim Acta. 2003;402:117–22.

    Article  CAS  Google Scholar 

  102. Domán I, Illés T, Lőrinczy D. Differential scanning calorimetric examination of the human intervertebral disc: establishment of calorimetric standards of different stages of degeneration. Thermochim Acta. 2003;405:293–9.

    Article  CAS  Google Scholar 

  103. Szántó Z, Benkő L, Gasz B, Jancsó G, Rőth E, Lőrinczy D. Differential scanning calorimetric examination of the tracheal cartilage after primary reconstruction with continuous sutures. A preliminary study. Thermochimica Acta. 2004;417:171–4.

    Article  CAS  Google Scholar 

  104. Benkő L, Danis J, Czompo M, Hubmann R, Ferencz A, Jancsó G, Szántó Z, Zólyomi A, Könczöl F, Bellyei Á, Rőth E, Lőrinczy D. DSC examination of the oesophagus after two different self-expandable stents implantation. An experimental study. J Thermal Anal Calorim. 2006;83:715–20.

    Article  CAS  Google Scholar 

  105. Benkő L, Danis J, Hubmann R, Kasza G, Gömöri É, Rőth E, Lőrinczy D. DSC examination of the esophagus after implication of special stents, designed for the management of acute esophagus variceal bleeding. An experimental study. J Thermal Anal Calorim. 2009;95:763–8.

    Article  CAS  Google Scholar 

  106. Wilhelm F, Kovács KA, Vértes Z, Lőrinczy D. Human uterus in pregnancy, as it can be monitored by DSC (differential scanning calorimetric) examination. A preliminary study. J Thermal Anal Calorim. 2007;89:863–5.

    Article  CAS  Google Scholar 

  107. Bognár G, Szabó I, Bálint L, Hepp B, Kereskai L, Lőrinczy D. Thermal effects of shoulder electrothermal arthroscopic capsulorrhaphy monitored by differential scanning calorimetry—a preliminary study. Thermochim Acta. 2007;464:78–82.

    Article  CAS  Google Scholar 

  108. Wiegand N, Vámhidy L, Patczai B, Dömse E, Than P, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of transverse-carpal ligament in carpal-tunnel disease. J Thermal Anal Calorim. 2009;95:793–6.

    Article  CAS  Google Scholar 

  109. Wiegand N, Vámhidy L, Patczai B, Dömse E, Than P, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of the degenerated human palmar aponeurosis in Dupuytren disease. J Thermal Anal Calorim. 2009;95:797–800.

    Article  CAS  Google Scholar 

  110. Wiegand N, Vámhidy L, Patczai B, Dömse E, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of the human skeletal muscle in a compartment syndrome of the lower extremities. J Thermal Anal Calorim. 2009;98:177–82.

    Article  CAS  Google Scholar 

  111. Wiegand N, Vámhidy L, Kereskai L, Lőrinczy D. Differential scanning calorimetric examination of the ruptured Achilles tendon in human. Thermochim Acta. 2010;498:7–10.

    Article  CAS  Google Scholar 

  112. Nedvig K, Ferencz A, Rőth E, Lőrinczy D. DSC examination of intestinal tissue following warm ischemia and reperfusion injury. J Thermal Anal Calorim. 2009;95:775–9.

    Article  CAS  Google Scholar 

  113. Ferencz A, Nedvig K, Lőrinczy D. DSC examination of intestinal tissue following cold preservation. Thermochim Acta. 2010;497:41–5.

    Article  CAS  Google Scholar 

  114. Ferencz A, Nedvig K, Lőrinczy D. DSC, as a new method to verify the exact warm and cold ischemic injury during small bowel surgery. Thermochim Acta. 2010;509:50–5.

    Article  CAS  Google Scholar 

  115. Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes. I. Normal subjects and anemic patients. Scand J Clin Lab Inv. 1973;32:47–54.

    Article  CAS  Google Scholar 

  116. Bandmann U, Monti M, Wadsö I. Microcalorimetric measurements of heat production in whole blood and blood cells of normal persons. Scand J Clin Lab Inv. 1975;35:121–7.

    Article  CAS  Google Scholar 

  117. Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes. II. Hyperthyroid patients before, during and after treatment. Acta Med Scan. 1976;200:301–8.

    Article  CAS  Google Scholar 

  118. Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes. III. Influence of pH, temperature and glucose concentration. Scand J Clin Lab Inv. 1976;36:565–72.

    Article  CAS  Google Scholar 

  119. Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes. Heat effect of methylene blue stimulation. Scand J Clin Lab Inv. 1976;36:431–6.

    Article  CAS  Google Scholar 

  120. Monti M, Wadsö I. Microcalorimetric measurements of heat production in human erythrocytes. IV. Comparison between different calorimetric techniques, suspension media, and preparation methods. Scand J Clin Lab Inv. 1976;36:573–80.

    Article  CAS  Google Scholar 

  121. Monti M. Microcalorimetric measurements of heat production in human erythrocytes of patients with chronic uraemia. Scand J Haematol. 1977;18:154–62.

    Article  CAS  Google Scholar 

  122. Monaselidze J, Kalandadze Y, Topuridze I, Gadabadze M. Thermodynamic properties of serum and plasma of patients sick with cancer. High Temp High Press. 1997;29:677–81.

    Article  CAS  Google Scholar 

  123. Khachidze DG, Monaselidze DR. Microcalorimetric study of human blood serum. Biophys. 2000;45:320–4.

    CAS  Google Scholar 

  124. Michnik A, Michalik K, Kluczewska A, Drzazga Z. Comparative DSC study of human and bovine serum albumin. J Therm Anal Calorim. 2006;84:113–7.

    Article  CAS  Google Scholar 

  125. Michnik A, Drzazga Z. Thermal denaturation of mixtures of human serum proteins: DSC study. J Therm Anal Calorim. 2010;101:513–8.

    Article  CAS  Google Scholar 

  126. Michnik A. Blood plasma, serum and serum proteins microcalorimetric studies aimed at diagnosis support. In: Lőrinczy D, editor. Thermal analysis in medical application. Akadémiai Kiadó: Budapest; 2011. p. 171–90. ISBN 978-963-05-8992-5.

    Google Scholar 

  127. Garbett NC, Mekmaysy CS, Helm CW, Jenson AB, Chaires JB. Differential scanning calorimetry of blood plasma for clinical diagnosis and monitoring. Exp Mol Pathol. 2009;86:186–91.

    Article  CAS  Google Scholar 

  128. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetric analysis of the plasma proteome. Semin Nephrol. 2007;27:621–6.

    Article  CAS  Google Scholar 

  129. Garbett NC, Miller JJ, Jenson AB, Chaires JB. Calorimetry outside the box: a new window. Biophys J. 2008;94:1377–83.

    Article  CAS  Google Scholar 

  130. Fish DJ, Brewood GP, Kim JS, Garbett NC, Chaires JB, Benight AS. Statistical analysis of plasma thermograms measured by differential scanning calorimetry. Biophys Chem. 2010;152:184–90.

    Article  CAS  Google Scholar 

  131. Garbett NC, Mekmaysy CS, DeLeeuw L, Chaires JB. Clinical application of plasma thermograms. Utility, practical approaches and considerations. Methods. 2015;76:41–50.

    Article  CAS  Google Scholar 

  132. Todinova S, Krumova S, Gartcheva L, Robeerst C, Taneva SG. Microcalorimetry of blood serum proteome: a modified interaction network in the multiple myeloma case. Anal Chem. 2011;83:7992–8.

    Article  CAS  Google Scholar 

  133. Todinova S, Krumova S, Kurtev P, Dimitrov V, Djongov L, Dudunkov Z, Taneva SG. Calorimetry-based profiling of blood plasma from colorectal cancer patients. Biochim Biophys Acta. 2012;1820:1879–85.

    Article  CAS  Google Scholar 

  134. Krumova S, Rukova B, Todinova S, Gartcheva L, Milanova V, Toncheva D, Taneva SG. Calorimetric monitoring of the serum proteome in schizophrenia patients. Thermochim Acta. 2013;572:59–64.

    Article  CAS  Google Scholar 

  135. Zapf I, Fekecs T, Ferencz A, Tizedes G, Pavlovics G, Kálmán E, Lőrinczy D. DSC analysis of human plasma in breast cancer patients. Thermochimica Acta. 2011;524:88–91.

    Article  CAS  Google Scholar 

  136. Kikalishvili L, Ramishvili M, Nemsadze G, Lezhava T, Khorava P, Gorgoshidze M, Kiladze M, Monaselidze J. Thermal stability of blood plasma proteins of breast cancer patients, DSC study. J Therm Anal Calorim. 2015;120:501–5.

    Article  CAS  Google Scholar 

  137. Zapf I, Moezzi M, Fekecs T, Nedvig K, Lőrinczy D, Ferencz A. Influence of oxidative injury and monitoring of blood plasma by DSC on breast cancer patients. J Thermal Anal Calorim. 2016;123:2029–35.

    Article  CAS  Google Scholar 

  138. Ferencz A, Zapf I, Lőrinczy D. Harmful effect of neoadjuvant chemotherapy monitoring by DSC on breast cancer patients’ blood plasma. J Thermal Anal Calorim. 2016;126:55–69.

    Article  CAS  Google Scholar 

  139. Michnik A, Drzazga Z, Michalik K, Barczyk A, Santura I, Sozanska E, Pierzchała W. Differential scanning calorimetry study of blood serum in chronic obstructive pulmonary disease. J Therm Anal Calorim. 2010;102:57–60.

    Article  CAS  Google Scholar 

  140. Szalai Z, Molnár TF, Lőrinczy D. Differential scanning calorimetry (DSC) of blood serum in chronic obstructive pulmonary disease (COPD): a new diagnostic tool ahead? J Thermal Anal Calorim. 2013;113:259–64.

    Article  CAS  Google Scholar 

  141. Fekecs T, Zapf I, Ferencz A, Lőrinczy D. DSC analysis of human plasma in melanoma patients with or without regional lymph node metastases. J Thermal Anal Calorim. 2012;108:149–52.

    Article  CAS  Google Scholar 

  142. Mehdi M, Fekecs T, Zapf I, Ferencz A, Lőrinczy D. Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages. J Thermal Anal Calorim. 2013;111:1801–4.

    Article  CAS  Google Scholar 

  143. Mehdi M, Ferencz A, Lőrinczy D. Evaluation of blood plasma changes by differential scanning calorimetry in psoriatic patients treated with drugs. J Thermal Anal Calorim. 2014;116:557–62.

    Article  CAS  Google Scholar 

  144. Moezzi M, Zapf I, Fekecs T, Nedvig K, Lőrinczy D, Ferencz A. Influence of oxidative injury and monitoring of blood plasma by DSC on patients with psoriasis. J Thermal Anal Calorim. 2016;123:2037–43.

    Article  CAS  Google Scholar 

  145. Könczöl F, Wiegand N, Nöt LG, Lőrinczy D. Examination of the cyclophosphamide induced polyneuropathy on Guinea pig sciatic nerve and gastrocnemius muscle with differential scanning calorimetry. J Thermal Anal Calorim. 2014;115:2239–43.

    Article  CAS  Google Scholar 

  146. Farkas P, Könczöl F, Lőrinczy D. Examination of the peripheral nerve and muscle damage in cyclophosphamide monotherapy with DSC in animal models. J Thermal Anal Calorim. 2016;126:47–53.

    Article  CAS  Google Scholar 

  147. Lőrinczy D, Belágyi J. Comparative study of myosins in solutions and supramolecular complexes. Effect of nucleotides. Thermochim Acta. 1997;296:161–8.

    Article  Google Scholar 

  148. Schimmel KJ, Richel DJ, van den Brink RB, Guchelaar HJ. Cardiotoxicity of cytotoxic drugs. Cancer Treat Rev. 2004;30:181–91.

    Article  CAS  Google Scholar 

  149. Brockstein BE, Smiley C, Al-Sadir J, Williams SF. Cardiac and pulmonary toxicity in patients undergoing high-dose chemotherapy for lymphoma and breast cancer: prognostic factors. Bone Marrow Transpl. 2000;25:885–94.

    Article  CAS  Google Scholar 

  150. Zhang J, Tian Q, Zhou SF. Clinical pharmacology of cyclophosphamide and ifosfamide. Curr Drug Ther. 2006;1:55–84.

    Article  CAS  Google Scholar 

  151. Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: thermodynamics, stability, molecular recognition and application in drug design. Curr Med Chem. 2005;12:2011–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The SETARAM Micro DSC-II (Caluire, France) calorimeter was supported by grant from the Hungarian Scientific Research Found (NKFIH) CO-272. All the figures, tables and results are involved in this paper by the permission of JTAC/Akadémiai Kiadó-Springer Nature (Hungary). The paper based on the 5th SETARAM ICTAC Award (Orlando, USA 2016) sponsored by SETARAM and is dedicated to the 650th anniversary of the foundation of the University of Pécs, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lőrinczy.

Additional information

The paper is based on the ICTAC-2016 SETARAM Award plenary lecture.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lőrinczy, D. Thermal analysis in biological and medical applications. J Therm Anal Calorim 130, 1263–1280 (2017). https://doi.org/10.1007/s10973-017-6308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-017-6308-2

Keywords

Navigation