Skip to main content
Log in

Trends in thermodynamic parameters of phase transitions of lanthanide sulfides SrLnCuS3 (Ln = La–Lu)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

SrLnCuS3 (Ln = La–Lu) compounds melt incongruently. Their thermochemical parameters are determined. The melting temperatures and the enthalpies of melting are: for SrLaCuS3, T = 1513 K and ΔH = 6.9 kJ mol−1; for SrCeCuS3, T = 1468 K and ΔH = 5.2 kJ mol−1; for SrPrCuS3, T = 1459 K and ΔH = 13.2 kJ mol−1; for SrNdCuS3, T = 1429 K and ΔH = 16.8 kJ mol−1; and for SrSmCuS3, T = 1605 K and ΔH = 2.8 kJ mol−1. Three high-temperature polymorphic transitions are found to occur in SrLnCuS3 (Ln = Sm, Gd–Lu) compounds. The parameters of these transitions are determined: for SrSmCuS3,  ↔ β = 1452 K, Δ ↔ β = 3.0 kJ mol−1,  ↔ γ = 1464 K, Δ ↔ γ = 0.2 kJ mol−1,  ↔ δ = 1476 K, and Δ ↔ δ = 1.1 kJ mol−1; for SrDyCuS3,  ↔ β = 1530 К,  ↔ γ = 1568 К, and  ↔ δ = 1585 K; for SrTmCuS3,  ↔ β = 1580 K,  ↔ γ = 1618 K, and  ↔ δ = 1631 K; and for SrYbCuS3,  ↔ β = 1567 K,  ↔ γ = 1608 K, and  ↔ δ = 1621 K. The transitions are observed both upon heating and upon cooling. The high-temperature phases are not quenchable. Phase-transition temperature versus r(Ln3+) curves for SrLnCuS3 (Ln = La–Lu) feature the tetrad effect. The SrLnCuS3 (Ln = La–Nd) compounds are classified as thiocuprates; their melting temperatures decrease systematically from La to Nd. The SrCuLnS3 (Ln = Sm, Gd–Lu) compounds are classified as thiolanthanates; their melting temperatures increase in the order from Sm to Tm and from Tm to Lu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zapała L, Kosińska M, Woźnicka E, Byczyński L, Zapała W. Synthesis, spectral and thermal study of La(III), Nd(III), Sm(III), Eu(III), Gd(III) and Tb(III) complexes with mefenamic acid. J Therm Anal Calorim. 2016;124(1):363–74.

    Article  Google Scholar 

  2. Xia Y, Huang Y, Li Y, Liao S, Long Q, Liang J. LaPO4: Ce, Tb, Yb phosphor—synthesis and kinetics study for thermal process of precursor by Vyazovkin, OFW, KAS, Starink, and Mastplosts methods. J Therm Anal Calorim. 2015;120(3):1635–43.

    Article  CAS  Google Scholar 

  3. Rojas RM, Torralvo MJ, Otero-Diaz LC. Thermal behaviour and microstructural characterization of lanthanide sulphides. J Therm Anal Calorim. 1992;38(4):961–71.

    Article  CAS  Google Scholar 

  4. Koscielski LA, Ibers JA. The structural chemistry of quaternary chalcogenides of the type AMM`Q3. Z Anorgan Allgem Chem. 2012;638(B.15):2585–93.

    Article  CAS  Google Scholar 

  5. Gylay LD, Olekseyuk ID, Wolcyrz M, Stepien-Damm J. Crystal structures of the RCuPbS3 (R = Tb, Dy, Ho, Er, Tm, Yb and Lu) compounds. J Alloys Compd. 2005;399:189–95.

    Article  Google Scholar 

  6. Gulay LD, Shemet VY, Olekseyuk ID, Stepie-Damm J, Pietraszko A, Koldun LV, Filimonyuk JO. Investigation of the R2S3–Cu2S–PbS (R = Y, Dy, Ho and Er) systems. J Alloys Compd. 2007;431:77–84.

    Article  CAS  Google Scholar 

  7. Brennan TD, Ibers JA. LaPbCuS3: Cu(I) insertion into the α-La2S3 framework. J Solid State Chem. 1992;97:377–82.

    Article  CAS  Google Scholar 

  8. Wakeshima M, Furuuchi F, Hinatsu Y. Crystal structures and magnetic properties of novel rare-earth copper sulfides, EuRCuS3 (R = Y, Gd–Lu). J Phys: Condens Matter. 2004;16:5503–18.

    CAS  Google Scholar 

  9. Furuuchi F, Wakeshima M, Hinatsu Y. Magnetic properties and (151)Eu Mossbauer effects of mixed valence europium copper sulfide, Eu2CuS3. J Solid State Chem. 2004;177(11):3853–8.

    Article  CAS  Google Scholar 

  10. Sikerina NV. Regularities of phase equilibria in the SrS–Cu2S–Ln2S3 (Ln = La–Lu) systems, preparation and composition of SrLnCuS3 compounds (Cand. Diss. thesis): Tyumen. 2005:26.

  11. Andreev OV, Ruseikina AV, Solovyev LA, Bamburov VG. Synthesis, structure, physicochemical characteristics of ALnBS3 (A = Sr, Eu; Ln = La–Lu; B = Cu, Ag). Ekaterinburg: EPD UD RAS;2014.

  12. Ruseikina AV, Solov’ev LA. Crystal structures of α- and β-SrCeCuS3. Russ J Inorg Chem. 2016;61(4):482–7.

    Article  CAS  Google Scholar 

  13. Ruseikina AV, Solov’ev LA, Andreev OV. Crystal structures and properties of SrLnCuS3 (Ln = La, Pr). Russ J Inorg Chem. 2014;59(3):196–201.

    Article  CAS  Google Scholar 

  14. Ruseikina AV, Koltsov SI, Tupitcyn AV. Synthesizing a new complex sulfide SrHoCuS3. In: XV international scientific conference «High-Tech in Chemical Engineering—2014», Zvenigorod M, editors. Lomonosow Moscow State University of Fine Chemical Technologies (MITHT Publisher). 2014;215 (in Russian).

  15. Cook W, Shiozawa L, Augustine F. The Cu–S phase diagram. J Appl Phys. 1970;41:3058–63.

    Article  CAS  Google Scholar 

  16. Ballestracci R, Bertaut EF. Etude cristallographigue de nouveaux sulfures des terres rares et de cuivre (1). Bull Soc Fransc Miner Crist. 1965;88(4):575–9.

    CAS  Google Scholar 

  17. Andreev OV, Ruseikina AV. Heat of melting compounds LnCuS2. Tyumen State Univ Her. 2011;5:186–9.

    Google Scholar 

  18. Ruseikina AV, Demchuk ZA, Kislitcyn AA. Warmth of phase transformations connection of EuGdCuS3. Tyumen State Univ Her. 2012;5:19–25.

    Google Scholar 

  19. Dzhurinskii BF, Bandurkin GA. Lanthanon pereodic behaviour and inorganic materials [Pereodichnost’ svoystv lantanidov i neorganicheskie materialy]. Neorg Mater. 1979;15(6):1024–7 (in Russian).

    CAS  Google Scholar 

  20. Dzhurinskii BF. Rare earth element periodic behaviour [Pereodichnost’ svoystv redkozemelnyh elementov]. Russ J Inorg Chem. 1980;25(1):79–86 (in Russian).

    CAS  Google Scholar 

  21. Fedorov PP. Anneal time determined by studying phase transitions in solid binary systems. Russ J Inorg Chem. 1992;37(8):1891–4.

    CAS  Google Scholar 

  22. Clarke A, Eberhardt C. Microscopy techniques for materials science. Cambridge: Woodhead Publishing; 2002.

    Book  Google Scholar 

  23. Brandon DG, Kaplan WD. Microstructural characterization of materials. London: Wiley; 1999.

    Google Scholar 

  24. Andreev OV, Bamburov VG, Monina LN, Razumkova IA, Ruseikina AV, Mitroshin OYu, Andreev VO. Phase equilibria in the sulfide systems of the 3d-, 4f-elements. Ekaterinburg: EPD UD RAS;2015.

  25. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976;32:751–67.

    Article  Google Scholar 

  26. Husain M, Batra A, Srivastava KS. Electonegative, radii elements. Polyhedron. 1989;8(9):1233–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the assignment of the Russian Federation Government No. 2014/228 (R&D Project No. 996) and by the Engineering Center of Tyumen State University as a pilot project in the frame of the Engineering Roadmap approved by the Russian Federation Government in Decree No. 1300-r, July 23, 2013; and the State Program of the Russian Federation “Development of Industries and Improvement of Their Competitiveness” approved by the Russian Federation Government in Resolution No. 328, April 15, 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna V. Ruseikina.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruseikina, A.V., Andreev, O.V., Galenko, E.O. et al. Trends in thermodynamic parameters of phase transitions of lanthanide sulfides SrLnCuS3 (Ln = La–Lu). J Therm Anal Calorim 128, 993–999 (2017). https://doi.org/10.1007/s10973-016-6010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-6010-9

Keywords

Navigation