Skip to main content
Log in

Thermal stability of ethylene carbonate reacted with delithiated cathode materials in lithium-ion batteries

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Confinement tests are implemented for measuring exothermic behaviors of eight delithiated or non-lithiated cathode materials mixed with ethylene carbonate (EC) which are commonly used in lithium-ion batteries. Eight delithiated and non-lithiated cathode materials, namely lithium cobalt oxide (LixCoO2), nickel oxide (NiO2), lithium nickel oxide (LixNiO2), lithium nickel cobalt oxide (LixNi0.8Co0.2O2), manganese oxide (Mn2O4), lithium manganese oxide (LixMn2O4), cobalt oxide (Co3O4) and iron phosphate (FePO4)are mixed with EC under a programmed rate of heating, respectively. Trajectories of temperature and pressure are measured simultaneously in the confined apparatus. Characteristics of thermal runaway such as onset temperature, maximum temperature, maximum pressure, maximum self-heat rate, etc., are assessed. The ranking of thermal stabilities of delithiated cathode and non-lithiated materials with EC is discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y. Challenges for rechargeable Li batteries. Chem Mater. 2010;22:587–603.

    Article  CAS  Google Scholar 

  2. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB. LixCoO2 (0 < x < 1): a new cathode material for batteries of high energy density. Mater Res Bull. 1980;15:783–9.

    Article  CAS  Google Scholar 

  3. Goodenough JB. Cathode materials: a personal perspective. J Power Sources. 2007;174:996–1000.

    Article  CAS  Google Scholar 

  4. Nagaura T. Development of rechargeable lithium batteries. JEC Battery Newsletter No. 2, 1991. p. 17–5.

  5. Lisbona D, Snee T. A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Prot. 2011;89:434–42.

    Article  CAS  Google Scholar 

  6. Wang Q, Ping P, Zhao X, Chu G, Sun J, Chen C. Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources. 2012;208:210–24.

    Article  CAS  Google Scholar 

  7. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100.

    Article  CAS  Google Scholar 

  8. Wittingham MS. Lithium batteries and cathode materials. Chem Rev. 2004;104:4271–301.

    Article  Google Scholar 

  9. Koksbang R, Barker J, Shi H, Saidi MY. Cathode materials for lithium rocking batteries. Solid State Ion. 1996;84:1–21.

    Article  CAS  Google Scholar 

  10. MacNeil DD, Dahn JR. The reaction of charged cathodes with nonaqueous solvents and electrolytes: Ι. Li0.5CoO2. J Electrochem Soc. 2001;148:A1205–10.

    Article  CAS  Google Scholar 

  11. Baba Y, Okada S, Yamaki J. Thermal stability of LixCoO2 cathode for lithium ion battery. Solid State Ion. 2002;148:311–6.

    Article  CAS  Google Scholar 

  12. Zhang Z, Fouchard D, Rea JR. Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells. J Power Sources. 1998;70:16–20.

    Article  CAS  Google Scholar 

  13. Jiang J, Dahn JR. ARC studies of the thermal stability of three different cathode materials: LiCoO2; Li[Ni0.1Co0.8Mn0.1]O2; and LiFePO4, in LiPF6 and LiBoB EC/DEC electrolytes. Electrochem Commun. 2004;6:39–43.

    Article  CAS  Google Scholar 

  14. Wang Y, Jiang J, Dahn JR. The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with non-aqueous electrolyte. Electrochem Commun. 2007;9:2534–40.

    Article  CAS  Google Scholar 

  15. Ohzuku T, Makimura Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: a possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem Lett. 2001;8:744–5.

    Article  Google Scholar 

  16. Koyama Y, Yabuuchi N, Tanaka I, Adachi H, Ohzuku T. Solid-state chemistry and electrochemistry of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries Ι. First-principle calculation on the crystal and electronic structure. J Electrochem Soc. 2004;151:A545–1551.

    Article  Google Scholar 

  17. Yabuuchi N, Ohzuku T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. J Power Sources. 2003;119–121:171–4.

    Article  Google Scholar 

  18. Zhou F, Zhao X, Lu Z, Jiang J, Dahn JR. The effect of Al substitution on the reactivity of delithiated LiNi1/3 Mn1/3Co(1/3−z)AlzO2 with non-aqueous electrolyte. Electrochem Commun. 2008;10:1168–71.

    Article  CAS  Google Scholar 

  19. Fong F, Sacken FU, Dahn JR. Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J Electrochem Soc. 1990;137:2009–13.

    Article  CAS  Google Scholar 

  20. ASTM: E476-2001. Standard test method for thermal instability of confined condensed phase systems (confinement test).

  21. Hsieh TY, Duh YS, Kao CS. Evaluation of thermal hazard for commercial 14500 lithium-ion batteries. J Therm Anal Calorim. 2014;116:1491–5.

    Article  CAS  Google Scholar 

  22. Xia Y, Fujieda T, Tatsumi K, Prosini PP, Sakai T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J Power Sources. 2001;92:234–43.

    Article  CAS  Google Scholar 

  23. MacNeil DD, Lu Z, Chen Z, Dahn JR. A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes. J Power Sources. 2002;108:8–14.

    Article  CAS  Google Scholar 

  24. Venkatachalapathy R, Lee CW, Lu W, Prakash J. Thermal investigations of transitional metal oxide cathodes in Li-ion cells. Electrochem Commun. 2000;2:104–7.

    Article  CAS  Google Scholar 

  25. Ou WJ, Duh YS, Kao CS, Hsu JM. Thermal instabilities of organic carbonates with discharged cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2014;116:1111–6.

    Article  CAS  Google Scholar 

  26. Duh YS, Ou WJ, Kao CS, Hsu JM. Thermal instabilities of organic carbonates with charged cathode materials in lithium-ion batteries. J Therm Anal Calorim. 2014;116:1105–10.

    Article  CAS  Google Scholar 

  27. Chen G, Richardson TJ. Thermal instability of Olivine-type LiMnPO4 cathodes. J Power Sources. 2010;195:1221–4.

    Article  CAS  Google Scholar 

  28. Dubaniewicz TH, DuCarme JP. Are lithium ion cells intrinsically safe? IEEE Trans Ind Appl. 2013;4(6):2451–60.

    Article  Google Scholar 

  29. Wen CY, Jhu CY, Wang YW, Chiang CC, Shu CM. Thermal runaway features of 18650 lithium-ion batteries for LiFePO4 cathode material by DSC and VSP2. J Therm Anal Calorim. 2012;109:1297–302.

    Article  CAS  Google Scholar 

  30. Jhu CY, Wang YW, Wen CY, Chiang CC, Shu CM. Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J Therm Anal Calorim. 2011;106:159–63.

    Article  CAS  Google Scholar 

  31. Larsson F, Mellander BE. Abuse by external heating, overcharge and short circuiting of commercial lithium-ion battery cells. J Electrochem Soc. 2014;161:A1611–7.

    Article  CAS  Google Scholar 

  32. Hsu JM, Su MS, Huang CY, Duh YS. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO. J Hazard Mater. 2012;217–218:19–28.

    Article  Google Scholar 

  33. Konishi H, Yoshikawa M, Hirano T, Hidaka K. Evaluation of thermal stability in Li0.2NixMn(1−x)/2Co(1−x)/2O2 (x = 1/3, 0.6 and 0.8) through X-ray absorption fine structure. J Power Sources. 2014;254:338–44.

    Article  CAS  Google Scholar 

  34. Bak S, Hu E, Zhou Y, Yu X, Senanayake SD, Cho S, Kim K, Chung KY, Yang X, Nam K. Structural changes and thermal stability of charged LiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. Appl Mater Interfaces. 2014;6:22594–601.

    Article  CAS  Google Scholar 

  35. Konishi H, Yuasa T, Yoshikawa M. Thermal stability of Li1−yNixMn(1−x)/2Co(1−x)/2O2 layer-structured cathode materials used in Li-ion batteries. J Power Sources. 2011;196:6884–8.

    Article  CAS  Google Scholar 

  36. Wu L, Nam K, Wang X, Zhou Y, Zheng J, Yang X, Zhu Y. Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries. Chem Mater. 2011;33:3953–60.

    Article  Google Scholar 

  37. Yoon W, Chung KY, Balasubramanian M, Hanson J, McBreen J, Yang X. Time-resolved XRD study on the thermal decomposition of nickel-based layered cathode materials for Li-ion batteries. J Power Sources. 2006;163:219–22.

    Article  CAS  Google Scholar 

  38. Arai H, Tsuda M, Saito K, Hayashi M, Sakurai Y. Thermal reactions between delithiated lithium nickelate and electrolyte solutions. J Electrochem Soc. 2002;149:A401–6.

    Article  CAS  Google Scholar 

  39. Furushima Y, Yanagisawa C, Nakagawa T, Aoki Y, Muraki N. Thermal stability and kinetics of delithiated LiCoO2. J Power Sources. 2011;196:2260–3.

    Article  CAS  Google Scholar 

  40. Wang Q, Sun J, Chen X, Chen C. Thermal stability of delithiated LiMn2O4 with electrolyte for lithium-ion batteries. J Electrochem Soc. 2002;154(4):A263–7.

    Article  Google Scholar 

  41. Johannes MD, Swider-Lyons K, Love CT. Oxygen character in the density of states as an indicator of the stability of Li-ion battery cathode materials. Solid State Ions. 2016;286:83–9.

    Article  CAS  Google Scholar 

  42. Wang Q, Sun J, Chen X, Chu G, Chen C. Effects of solvents and salt on the thermal stability of charged LiCoO2. Mater Res Bull. 2009;44:543–8.

    Article  CAS  Google Scholar 

  43. Cho J, Jung H, Park Y, Kim G, Lim HS. Electrochemical properties and thermal stability of LiaNi1-xCoxO2 cathode materials. J Electrochem Soc. 2000;147(1):15–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank National Science Council, ROC., for financial support of this study under contract No. NSC 101-2221-E-239-017-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen-Shan Kao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duh, YS., Chen, YL. & Kao, CS. Thermal stability of ethylene carbonate reacted with delithiated cathode materials in lithium-ion batteries. J Therm Anal Calorim 127, 995–1007 (2017). https://doi.org/10.1007/s10973-016-5794-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5794-y

Keywords

Navigation