Skip to main content
Log in

Thermal analysis study on the grain refinement of Al–15Zn–2.5Mg–2.5Cu alloy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Computer-aided cooling curve analysis is a reliable method to characterize the solidification behavior of an alloy. In this study, the effect of Al–5Ti–1B grain refiner on the solidification path, microstructure and macrostructure of a new Al–Zn–Mg–Cu super high-strength aluminum alloy containing high amounts of zinc was investigated using thermal analysis technique. The grain size measurement showed that Al–5Ti–1B reduces the grain size from 1402 to 405 μm. Solidification parameters in the liquidus region were in a good accordance with microstructural results. The addition of 1 mass% of Al–5Ti–1B grain refiner decreased ΔT N from 9.1 to 7.7 °C. It also diminished recalescence undercooling from 1.42 to 0.32 °C. The grain refinement also altered dendritic structure of the alloy from a coarse, elongated and non-uniform to a rosette and more uniform shape. Moreover, the grain refiner resulted in a more uniform distribution of eutectic structure between dendrite arms. Furthermore, the grain refinement enhanced fraction of solid at dendrite coherency point from 21 % for unrefined alloy to 25 % for the alloy containing 1 mass% Al–5Ti–1B. In the same trend, the addition of 1 mass% Al–5Ti–1B reduced the amounts of porosity from 2.3 to 1.8 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Stefanescu DM. Thermal analysis—theory and applications in metalcasting. Int J Metalcast. 2015;9(1):7–22.

    Article  CAS  Google Scholar 

  2. Upadhya K, Stefanescu DM, Lieu K, Yeager DP. Computer-aided cooling curve analysis: principles and applications in metal casting. AFS Trans. 1989;97(47):61–6.

    Google Scholar 

  3. Farahany S, Ourdjini A, Idris M, Shabestari S. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114(2):705–17.

    Article  CAS  Google Scholar 

  4. Farahany S, Idris MH, Ourdjini A, Faris F, Ghandvar H. Evaluation of the effect of grain refiners on the solidification characteristics of an Sr-modified ADC12 die-casting alloy by cooling curve thermal analysis. J Therm Anal Calorim. 2015;119(3):1593–601.

    Article  CAS  Google Scholar 

  5. Malekan M, Dayani D, Mir A. Thermal analysis study on the simultaneous grain refinement and modification of 380.3 aluminum alloy. J Therm Anal Calorim. 2014;115(1):393–9.

    Article  CAS  Google Scholar 

  6. Ghoncheh M, Shabestari S. Effect of cooling rate on the dendrite coherency point during solidification of Al2024 alloy. Metall Mater Trans A. 2015;46(3):1287–99.

    Article  CAS  Google Scholar 

  7. Shin J-S, Lee Z-H. Computer-aided cooling curve analysis of A356 aluminum alloy. Met Mater Int. 2004;10(1):89–96.

    Article  Google Scholar 

  8. Hegde S, Prabhu KN. Modification of eutectic silicon in Al–Si alloys. J Mater Sci. 2008;43(9):3009–27.

    Article  CAS  Google Scholar 

  9. Ludwig TH, Schaffer PL, Arnberg L. Influence of some trace elements on solidification path and microstructure of Al–Si foundry alloys. Metall Mater Trans A. 2013;44(8):3783–96.

    Article  CAS  Google Scholar 

  10. Shabestari S, Malekan M. Assessment of the effect of grain refinement on the solidification characteristics of 319 aluminum alloy using thermal analysis. J Alloys Compd. 2010;492(1):134–42.

    Article  CAS  Google Scholar 

  11. Malekan M, Shabestari S. Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J Therm Anal Calorim. 2010;103(2):453–8.

    Article  Google Scholar 

  12. Malekan M, Shabestari S. Effect of grain refinement on the dendrite coherency point during solidification of the A319 aluminum alloy. Metall Mater Trans A. 2009;40(13):3196–203.

    Article  Google Scholar 

  13. Malekan M, Naghdali S, Abrishami S, Mirghaderi SH. Effect of cooling rate on the solidification characteristics and dendrite coherency point of ADC12 aluminum die casting alloy using thermal analysis. J Therm Anal Calorim. 2016;. doi:10.1007/s10973-015-5232-6.

    Google Scholar 

  14. Timelli G, Camicia G, Ferraro S. Effect of grain refinement and cooling rate on the microstructure and mechanical properties of secondary Al–Si–Cu alloys. J Mater Eng Perform. 2014;23(2):611–21.

    Article  CAS  Google Scholar 

  15. Ruan Y, Wei B. Rapid solidification of undercooled Al–Cu–Si eutectic alloys. Chin Sci Bull. 2009;54(1):53–8.

    Article  CAS  Google Scholar 

  16. Eguskiza S, Niklas A, Fernández-Calvo AI, Santos F, Djurdjevic M. Study of strontium fading in Al–Si–Mg and Al–Si–Mg–Cu alloy by thermal analysis. Int J Metalcast. 2015;9(3):43–50.

    Article  CAS  Google Scholar 

  17. Coniglio N, Cross C. Characterization of solidification path for aluminium 6060 weld metal with variable 4043 filler dilution. Weld World. 2006;50(11–12):14–23.

    Article  CAS  Google Scholar 

  18. Ghoncheh M, Shabestari S, Abbasi M. Effect of cooling rate on the microstructure and solidification characteristics of Al2024 alloy using computer-aided thermal analysis technique. J Therm Anal Calorim. 2014;117(3):1253–61.

    Article  CAS  Google Scholar 

  19. Fornaro O, Palacio HA. Study of dilute Al–Cu solidification by cooling curve analysis. J Mater Sci. 2009;44(16):4342–7.

    Article  CAS  Google Scholar 

  20. Kamga HK, Larouche D, Bournane M, Rahem A. Solidification of aluminum–copper B206 alloys with iron and silicon additions. Metall Mater Trans A. 2010;41(11):2844–55.

    Article  Google Scholar 

  21. Haghdadi N, Phillion A, Maijer D. Microstructure characterization and thermal analysis of aluminum alloy B206 during solidification. Metall Mater Trans A. 2015;46(5):2073–81.

    Article  CAS  Google Scholar 

  22. Gonzalez C, Genesca J, Alvarez O, Juarez-Islas J. Solidification of chill-cast Al–Zn–Mg alloys to be used as sacrificial anodes. Metall Mater Trans A. 2003;34(12):2991–7.

    Article  Google Scholar 

  23. Ahmad AH, Naher S, Brabazon D. Thermal profiles and fraction solid of aluminium 7075 at different cooling rate conditions. Key Eng Mater. 2013;554–557:582–95.

  24. Gao T, Zhang Y, Liu X. Influence of trace Ti on the microstructure, age hardening behavior and mechanical properties of an Al–Zn–Mg–Cu–Zr alloy. Mater Sci Eng A. 2014;598:293–8. doi:10.1016/j.msea.2014.01.062.

    Article  CAS  Google Scholar 

  25. Deng Y, Yin Z, Zhao K, Duan J, Hu J, He Z. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65:288–98. doi:10.1016/j.corsci.2012.08.024.

    Article  CAS  Google Scholar 

  26. Fang HC, Chao H, Chen KH. Effect of Zr, Er and Cr additions on microstructures and properties of Al–Zn–Mg–Cu alloys. Mater Sci Eng A. 2014;610:10–6. doi:10.1016/j.msea.2014.05.021.

    Article  CAS  Google Scholar 

  27. Dai X, Xia C, Peng X, Ma K. Structure and properties of an ultra-high strength 7xxx aluminum alloy contained Sc and Zr. J Univ Sci Technol Beijing Miner Metall Mater. 2008;15(3):276–9. doi:10.1016/s1005-8850(08)60052-3.

    CAS  Google Scholar 

  28. Ii Y, Li P, Zhao G, Liu X, Cui J. The constituents in Al–10Zn–2.5Mg–2.5Cu aluminum alloy. Mater Sci Eng A. 2005;397(1):204–8.

    Article  Google Scholar 

  29. Pourkia N, Emamy M, Farhangi H, Ebrahimi SHS. The effect of Ti and Zr elements and cooling rate on the microstructure and tensile properties of a new developed super high-strength aluminum alloy. Mater Sci Eng A. 2010;527(20):5318–25. doi:10.1016/j.msea.2010.05.009.

    Article  Google Scholar 

  30. Seyed Ebrahimi SH, Emamy M. Effects of Al–5Ti–1B and Al–5Zr master alloys on the structure, hardness and tensile properties of a highly alloyed aluminum alloy. Mater Des. 2010;31(1):200–9. doi:10.1016/j.matdes.2009.06.031.

    Article  CAS  Google Scholar 

  31. Alipour M, Aghdam BG, Rahnoma HE, Emamy M. Investigation of the effect of Al–5Ti–1B grain refiner on dry sliding wear behavior of an Al–Zn–Mg–Cu alloy formed by strain-induced melt activation process. Mater Des. 2013;46:766–75. doi:10.1016/j.matdes.2012.10.058.

    Article  CAS  Google Scholar 

  32. Kierkus W, Sokolowski J. Recent advances in CCA: a new method of determining baseline equations (99–66). Trans Am Foundrymen’s Soc. 1999;107:161–8.

    CAS  Google Scholar 

  33. Erbas KC. On the Newtonian thermal analysis of casting: a critical approach. Beykent Univ J Sci Eng. 2014;7(2):47–60.

  34. Emadi D, Whiting LV, Đurđević MB, Kierkus WT, Sokolowski J. Comparison of newtonian and fourier thermal analysis techniques for calculation of latent heat and solid fraction of aluminum alloys. Metalurgija. 2004;10(2):91–106.

    Google Scholar 

  35. Mondal C, Mukhopadhyay A. On the nature of T (Al2Mg3Zn3) and S (Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy. Mater Sci Eng A. 2005;391(1):367–76.

    Article  Google Scholar 

  36. Stefanescu D. Science and engineering of casting solidification. Berlin: Springer; 2008.

    Google Scholar 

  37. Liu J, Zhang Y, X Li, Li Z, Xiong B, Zhang J. Thermodynamic calculation of high zinc-containing Al–Zn–Mg–Cu alloy. Trans Nonferrous Met Soc China. 2014;24(5):1481–7.

    Article  CAS  Google Scholar 

  38. Xie F, Yan X, Ding L, Zhang F, Chen S, Chu MG, et al. A study of microstructure and microsegregation of aluminum 7050 alloy. Mater Sci Eng A. 2003;355(1):144–53.

    Article  Google Scholar 

  39. Djurdjevic M, Sokolowski J, Odanovic Z. Determination of dendrite coherency point characteristics using first derivative curve versus temperature. J Therm Anal Calorim. 2012;109(2):875–82.

    Article  CAS  Google Scholar 

  40. Sigworth GK, Kuhn TA. Grain refinement of aluminum casting alloys. Int J Metalcast. 2007;1(1):31–40.

    Article  CAS  Google Scholar 

  41. Petri M, Medved J, Mrvar P. Effect of grain refinement and modification of eutectic phase on shrinkage of AlSi9Cu3 alloy. Metalurgija. 2011;50(2):127–31.

    Google Scholar 

  42. Arnberg L, Chai G, Backerud L. Determination of dendritic coherency in solidifying melts by rheological measurements. Mater Sci Eng A. 1993;173(1):101–3.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Tehran for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malekan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mostafapoor, S., Malekan, M. & Emamy, M. Thermal analysis study on the grain refinement of Al–15Zn–2.5Mg–2.5Cu alloy. J Therm Anal Calorim 127, 1941–1952 (2017). https://doi.org/10.1007/s10973-016-5737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5737-7

Keywords

Navigation