Skip to main content
Log in

Crystal structure and thermal behaviors of the tetrapotassium salt of octahydroimidazo-[4,5-d]imidazol-1,3,4,6-tetrasulfonic acid (TACOS-K)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The tetrahydrate of the tetrapotassium salt of octahydroimidazo-[4,5-d]imidazol-1,3,4,6-tetrasulfonic acid (TACOS-K), an new energetic material, was investigated in terms of its crystal structure, heat of combustion, thermal stability and decomposition kinetics. Its heat of combustion is −5487 ± 96 J g−1 from which a heat of formation of −3150 kJ mol−1 was estimated. It has been found that this compound has a hexagonal crystal space group with a density of 2.026 g mol−1 at 150 K. The organic anionic skeleton of the TACOS-K molecule is distinctly deformed. Six tetraanions interconnected by coordination to the potassium cations and hydrogen bridges to water molecules form hydrophilic as well as hydrophobic cavities. As an intermediate to synthesize cis-1,3,4,6-tetranitro-octahydroimidazo-[4,5-d]imidazole, it decomposes at around 31 °C with a first peak temperature range of 46.6–94.3 °C due to loss of water, depending on the heating rates. Hydrolysis of the N–S bonds might play an important role here. Crystalline water evaporation competes with this hydrolysis. TACOS-K has a residual mass of about 46 % at 2 °C min−1, which increases with the heating rate. Peak of the exothermic process occurs at 235.6 °C at the same heating rate with an enthalpy change of 164 J g−1. Dehydration occurs with an energy barrier of 36.7 kJ mol−1 followed by a shoulder mass loss process with a much higher activation energy 110.6 kJ mol−1, while the activation energy for the main exothermic reaction is about 136.2 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sysolyatin SV, Sakovich GV, Surmachev VN. Method for the synthesis of polycyclic nitramines. Russ Chem Rev. 2007;76(6):673–80.

    Article  CAS  Google Scholar 

  2. Gilardi R, Flippen-Anderson JL, Evans R. cis-2,4,6,8-Tetranitro-1H,5H-2,4,6,8 -tetraazabicyclo [3.3.0]octane, the Energetic Compound “bicyclo-HMX”. Acta Cryst Sect E. 2002;58:0972.

    Article  Google Scholar 

  3. Qiu L, Xiao H-M, Ju X-H. Density functional theory study of solvent effects on the structure and vibrational frequencies of tetranitrotetraazabicyclooctane “bicyclo-HMX”. Chin J Org Chem. 2005;52(3):405–13.

    Article  CAS  Google Scholar 

  4. Klasovitý D, Zeman S, Růžička A, Jungová M, Roháč M. cis-1,3,4,6-Tetranitrooctahydro- imidazo-[4,5-d]imidazole (BCHMX), its Properties and Initiation Reactivity. J Hazard Mater. 2009;164(2–3):379–85.

    Google Scholar 

  5. Elbeih A, Zeman S, Jungová M, Vávra P. Attractive nitramines and related PBXs. Propellants Explos Pyrotech. 2013;38(3):379–85.

    Article  CAS  Google Scholar 

  6. Klasovitý D, Zeman S, Process for preparing cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole (bicyclo-HMX, BCHMX). Czech Pat. 302068, C07D 487/04, University of Pardubice; 2010.

  7. Lobanova AA, Sysolyatin SV, Sakovich GV, Zharkov AS, Efimov OA, Popov NI, Process for preparation of 2,4,6,8-tetranitro-2,4,6,8-tetraazabicyclo[3.3.0]octane by nitration of the corresponding tetrasulfonate salts with nitric acid and nitric anhydride. Russ Pat RU 2445311 C1, C07D471/00, JCS Federal Res. and Prod. Center ALTAI, Biysk; 2012.

  8. Otwinowski Z, Minor W. Methods in enzymology. In: Carter Jr CW, Sweet RM, editors. Macromolecular crystallography, part A, vol. 276. New York: Academic Press; 1997. p. 307–26.

    Chapter  Google Scholar 

  9. Altomare A, Giacovazzo G, Cascarano C, Guagliardi A. Completion and refinement of crystal structures with SIR92. J Appl Crystal. 1993;26:343.

    Article  Google Scholar 

  10. Sheldrick GM. Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem. 2015;71:3.

    Article  Google Scholar 

  11. Coppens P. Evaluation of absorption and extinction in single-crystal structure analysis. In: Ahmed F, Hall SR, Huber CP, editors. Crystallographic computing. Copenhagen: Munksgaard; 1970.

    Google Scholar 

  12. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann HJ. OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst. 2009;42:339.

    Article  CAS  Google Scholar 

  13. Cambridge Crystallographic Data Centre, CCDC Deposition number: 633963. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc.ac.uk or www: http://www.ccdc.cam.ac.uk).

  14. Solid fuels—determination of heat of combustion by calorimetric method in the pressure vessel and calculation of calorific value. Czech Tech. Standard ČSN ISO 1928, Czech Inst. of Standards; June 1999.

  15. DeVeries KJ, Gellings PJ. The thermal decomposition of potassium and sodium-pyrosulfate. J Inorg Nucl Chem. 1969;31:1307–13.

    Article  Google Scholar 

  16. Koppes WM, Chaykovsky M, Adolph HG, Gilardi R, George C. Synthesis and Structure of some peri-substituted 2,4,6,8-tetraazabicyclo[3.3.0]octanes. J Org Chem. 1987;52:1113.

    Article  CAS  Google Scholar 

  17. Gilardi R, George C, Flippen-Anderson LJ. Structure 6,8-Diacetyl-2,4-dinitro-2,4,6,8- tetraazabicyclo[3.3.0]octane. Acta Crystallogr Sect C Cryst Struct Commun. 1992;48:1532.

    Article  Google Scholar 

  18. Kakanejadifard A, Farnia SMF. Synthesis and X-ray structural determination of new aniline derivatives of 2,4,6,8-tetraazabicyclo[3.3.0]octanes; anomeric effect in N–C–N moiety and implications of solvent polarity on 1H-NMR patterns. Tetrahedron. 1997;53:2551.

    Article  CAS  Google Scholar 

  19. Zhu JQ, Li J, Wang X, Fan P, Wang XN, Bian LJ, Li HQ, Tian Y-Q. Synthesis of imidazolidines by condensation of aromatic amines with glyoxal and formaldehyde. Curr Org Chem. 2012;16:1723.

    Article  CAS  Google Scholar 

  20. Zhang Z, Wang J, Zhang G, Li J. Inter-ring and endo anomeric effects, and hydrogen-bonded supramolecular motifs in two 2,4,6,8-tetraazabicyclo[3.3.0]octane derivatives. Acta Crystallogr Sect C Cryst Struct Commun. 2009;65:o146.

    Article  CAS  Google Scholar 

  21. Craig CC, Kassiou M, Read RW. Synthesis and stereochemical assignment of heterocycles derived from (2S*,2′S*,4R*,4′R*,6S*,6′S*)-4,4′,6,6′-tetramethylperhydro -2,2′-bipyrimidine. J Org Chem. 1992;57:3901.

    Article  CAS  Google Scholar 

  22. Nielsen AT, Nissan RA, Chafin AP, Gilardi RD, George CF. Polyazapolycyclics by condensation of aldehydes with amines. 3. Formation of 2,4,6,8-Tetrabenzyl-2,4,6,8-tetraazabicyclo[3.3.0]octanes from formaldehyde, glyoxal, and benzylamines. J Org Chem. 1992;57:6756.

    Article  CAS  Google Scholar 

  23. Spillane W, Malaubier JB. Sulfamic acid and its N- and O-substituted derivatives. Chem Rev. 2014;114:2507–86.

    Article  CAS  Google Scholar 

  24. Trueblood KN, Mayer SW. The crystal structure of sulfamide. Acta Cryst. 1956;9:628.

    Article  CAS  Google Scholar 

  25. Bharatam PV, Gupta AA, Kaur D. Theoretical studies on S–N interactions in sulfonamides. Tetrahedron. 2002;58:1759.

    Article  CAS  Google Scholar 

  26. Yan Q-L, Zeman S, Svoboda R, Elbeih A. Thermodynamic properties, decomposition kinetics and reaction models of BCHMX and its Formex bonded explosive. Thermochim Acta. 2012;547:150–60.

    Article  CAS  Google Scholar 

  27. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out as part of the project of the Ministry of Industry and Trade of the Czech Republic No. TA03010647.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svatopluk Zeman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RTF 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeman, S., Růžička, A., Moncol, J. et al. Crystal structure and thermal behaviors of the tetrapotassium salt of octahydroimidazo-[4,5-d]imidazol-1,3,4,6-tetrasulfonic acid (TACOS-K). J Therm Anal Calorim 126, 391–397 (2016). https://doi.org/10.1007/s10973-016-5528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5528-1

Keywords

Navigation