Skip to main content
Log in

Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A tri-arm star-shaped oligomer with PEG arm and imidazolium-based ionic liquid moiety (TSIL) was introduced in poly(lactic acid) (PLA) blends, and the synergetic effects of PEG arm and IL moiety contained in the TSIL on the crystallization behaviors of PLA were investigated by DSC and POM. The results determined by DSC show that TSIL inhibits the crystallization of PLA when the mass content of TSIL in blend is as low as 1 mass%, while the crystallization process is accelerated greatly with increasing mass content of TSIL. As revealed by POM observations, the spherulitic morphology remains unchanged in TSIL/PLA blends and the nucleation and growth of spherulites are altered due to the different effects of PEG arm and IL moiety. The nucleation process is suppressed by IL moiety, while the growth rate of spherulites is improved because of the plasticizing effect of PEG arm. The synergistic effects of PEG arm and IL moiety contained in the TSIL also contribute to the acceleration of kinetics in non-isothermal crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Prog Polym Sci. 2010;35:338–56.

    Article  CAS  Google Scholar 

  2. Jiang L, Wolcott MP, Zhang JW. Study of biodegradable polylactide/poly(butyleneadipate-co-terephthalate) blends. Biomacromolecules. 2006;7:199–207.

    Article  Google Scholar 

  3. Hao QH, Li FX, Li QB, Li Y, Jia L, Yang J, Fang Q, Cao AM. Preparation and crystallization kinetics of new structurally well-defined star-shaped biodegradable poly(l-lactide)s initiated with diverse natural sugar alcohols. Biomacromolecules. 2005;6:2236–47.

    Article  CAS  Google Scholar 

  4. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  5. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 2. Poly(lactide) with high stereoregularity. Polymer. 2003;44:5711–20.

    Article  CAS  Google Scholar 

  6. Henricks J, Boyum M, Zheng W. Crystallization kinetics and structure evolution of a polylactic acid during melt and cold crystallization. J Therm Anal Calorim. 2015;120:1765–74.

    Article  CAS  Google Scholar 

  7. Kulinski Z, Piorkowska E, Gadzinowska K, Stasiak M. Crystallization, structure and properties of plasticized poly(l-lactide). Biomacromolecules. 2006;7:2128–35.

    Article  CAS  Google Scholar 

  8. Tabi T, Suplicz A, Czigany T, Kovacs JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118:1419–30.

    Article  CAS  Google Scholar 

  9. Ljungberg N, Wesslen B. Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules. 2005;6:1789–96.

    Article  CAS  Google Scholar 

  10. Ljungberg N, Andersson T, Wesslen B. Film extrusion and film weldability of poly(lactic acid) plasticized with triacetine and tributyl citrate. J App Polym Sci. 2003;88:3239–47.

    Article  CAS  Google Scholar 

  11. Hu Y, Rogunova M, Topolkaraev V, Hiltner A, Baer E. Aging of poly(lactide)/poly(ethylene glycol) blends. Part 1. Poly(lactide) with low stereoregularity. Polymer. 2003;44:5701–10.

    Article  CAS  Google Scholar 

  12. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E. Crystallization and phase separation in blends of high stereoregular poly(lactide) with poly(ethylene glycol). Polymer. 2003;44:5681–9.

    Article  CAS  Google Scholar 

  13. Wei XF, Bao RY, Cao ZQ, Zhang LQ, Liu ZY, Yang W, Xie BH, Yang MB. Greatly accelerated crystallization of poly(lactic acid): cooperative effect of stereocomplex crystallites and polyethylene glycol. Colloid Polym Sci. 2013;292:163–72.

    Article  Google Scholar 

  14. Sungsanit K, Kao N, Bhattacharya SN. Properties of linear poly(lactic acid)/polyethylene glycol blends. Polym Eng Sci. 2012;52:108–16.

    Article  CAS  Google Scholar 

  15. Pillin I, Montrelay N, Grohens Y. Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? Polymer. 2006;47:4676–82.

    Article  CAS  Google Scholar 

  16. Baiardo M, Frisoni G, Scandola M, Rimelen M, Lips D, Ruffieux K, Wintermantel E. Thermal and mechanical properties of plasticized poly(l-lactic acid). J App Polym Sci. 2003;90:1731–8.

    Article  CAS  Google Scholar 

  17. Martin O, Averous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.

    Article  CAS  Google Scholar 

  18. Kulinski Z, Piorkowska E. Crystallization, structure and properties of plasticized poly(l-lactide). Polymer. 2005;46:10290–300.

    Article  CAS  Google Scholar 

  19. Rahman M, Brazel CS. Ionic liquids: new generation stable plasticizers for poly(vinyl chloride). Polym Degrad Stab. 2006;91:3371–82.

    Article  CAS  Google Scholar 

  20. Park KI, Xanthos M. A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab. 2009;94:834–44.

    Article  CAS  Google Scholar 

  21. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem. 2001;3:156–64.

    Article  CAS  Google Scholar 

  22. Hallett JP, Welton T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev. 2011;111:3508–76.

    Article  CAS  Google Scholar 

  23. Lovelock KRJ, Villar-Garcia IJ, Maier F, Steinruck HP, Licence P. Photoelectron spectroscopy of ionic liquid-based interfaces. Chem Rev. 2010;111:5158–90.

    Article  Google Scholar 

  24. Pandey S. Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta. 2006;556:38–45.

    Article  CAS  Google Scholar 

  25. Chen BK, Wu TY, Chang YM, Chen AF. Ductile polylactic acid prepared with ionic liquids. Chem Eng J. 2013;215–216:886–93.

    Article  Google Scholar 

  26. Park KI, Ha JU, Xanthos M. Ionic liquids as plasticizers/lubricants for polylactic acid. Polym Eng Sci. 2010;50:1105–10.

    Article  CAS  Google Scholar 

  27. Wei T, Pang SJ, Xu N, Pan L, Zhang Z, Xu R, Ma N, Lin Q. Crystallization behavior and isothermal crystallization kinetics of PLLA blended with ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate. J App Polym Sci. 2015;132:41308–19.

    Google Scholar 

  28. Gui HG, Li Y, Chen SY, Xu P, Zheng B, Ding YS. Effects of biodegradable imidazolium-based ionic liquid with ester group on the structure and properties of PLLA. Macromole Res. 2014;22:583–91.

    Article  CAS  Google Scholar 

  29. Zhang YQ, Xu HJ, Yang JJ, Chen SY, Ding YS, Wang ZG. Significantly accelerated spherulitic growth rates for semicrystalline polymers through the layer-by-layer film method. J Phys Chem C. 2013;117:5882–93.

    Article  CAS  Google Scholar 

  30. Zhang YQ, Wang ZK, Jiang F, Bai J, Wang ZG. Effect of miscibility on spherulitic growth rate for double-layer polymer films. Soft Matter. 2013;9:5771–8.

    Article  CAS  Google Scholar 

  31. Lai WC, Liau WB, Lin TT. The effect of end groups of PEG on the crystallization behaviors of binary crystalline polymer blends PEG/PLLA. Polymer. 2004;45:3073–80.

    Article  CAS  Google Scholar 

  32. Avrami M. Kinetics of phase change. I. General theory. J Chem Phys. 1939;7:1103–12.

    Article  CAS  Google Scholar 

  33. Avrami M. Kinetics of phase change. II Transformation-time relations for random distribution of nuclei. J Chem Phys. 1940;8:212–24.

    Article  CAS  Google Scholar 

  34. Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III. J Chem Phys. 1941;9:177–84.

    Article  CAS  Google Scholar 

  35. Bessard E, De Almeida O, Bernhart G. Unified isothermal and non-isothermal modelling of neat PEEK crystallization. J Therm Anal Calorim. 2014;115:1669–78.

    Article  CAS  Google Scholar 

  36. Chaurasia SK, Singh RK, Chandra S. Effect of ionic liquid on the crystallization kinetics behaviour of polymer poly(ethylene oxide). CrystEngComm. 2013;15:6022–34.

    Article  CAS  Google Scholar 

  37. Shalu Chaurasia SK, Singh RK. Crystallization behaviour of polymeric membrane based on polymer PVDF-HFP and ionic liquid BMIMBF4. RSC Adv. 2014;4:50914–24.

    Google Scholar 

  38. Wu DF, Wu L, Zhou WD, Zhang M, Yang T. Crystallization and biodegradation of polylactide/carbon nanotube composites. Polym Eng Sci. 2010;50:1721–33.

    Article  CAS  Google Scholar 

  39. Shi J, Lu X, Li H, Li D. Isothermal crystallization kinetics and melting behavior of PLLA/f-MWNTs composites. J Therm Anal Calorim. 2014;117:1385–96.

    Article  CAS  Google Scholar 

  40. Chaurasia SK, Singh RK, Chandra S. Ionic liquid assisted modification in ionic conductivity, phase transition temperature and crystallization kinetics behaviour of polymer poly(ethylene oxide). Solid State Ionics. 2014;262:790–4.

    Article  CAS  Google Scholar 

  41. Gupta AK, Singh RK, Chandra S. Crystallization kinetics behavior of ionic liquid [EMIM][BF4] confined in mesoporous silica matrices. RSC Adv. 2014;4:22277–87.

    Article  CAS  Google Scholar 

  42. Chen SY, Zhang YQ, Fang HG, Ding YS, Wang ZG. Can spherulitic growth rate accelerate before impingement for a semicrystalline polymer during the isothermal crystallization process? CrystEngComm. 2013;15:5464–75.

    Article  CAS  Google Scholar 

  43. Liu TX, Mo ZS, Wang SE, Zhang HF. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym Eng Sci. 1997;37:568–75.

    Article  CAS  Google Scholar 

  44. Qiu ZB, Mo ZS, Yu YY, Zhang HF, Sheng SR, Song CS. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone). J App Polym Sci. 2000;77:2865–71.

    Article  CAS  Google Scholar 

  45. Huang G, Zou Y, Luo W, Xiao M, Han D, Wang S, Meng Y. Nonisothermal crystallization behavior and kinetics of poly(l-lactide-co-propylene carbonate). J Therm Anal Calorim. 2015;121:877–83.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC) with Grant Nos. 51373045 and 51503055.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huagao Fang or Yunsheng Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Fang, H., Zhang, D. et al. Synergetic effects of PEG arm and ionic liquid moiety contained in the tri-arm star-shaped oligomer on the crystallization behaviors of poly(lactic acid). J Therm Anal Calorim 125, 849–860 (2016). https://doi.org/10.1007/s10973-016-5481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5481-z

Keywords

Navigation