Skip to main content
Log in

Measuring “hotness”: Should the sensor’s readings for rapid temperature changes be named “tempericity”?

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Angels have very nasty tempers, especially when they are feeling righteous (by Clive Barker).

Abstract

Expansion of the meaning of “temperature” into “hotness” is discussed and analyzed, with the goal of encompassing its two aspects: the physical quantity (thermodynamic, under equilibrium) and the operational quantity (experimentally observed under off-equilibrium circumstances by the sensor’s thermoscopic reading). For standard TA methods of controlled heating and/or cooling, the standard thermodynamics applies well, but when the temperature changes very rapidly (methods of sample quenching), the customary thermodynamics is inadequate. Notwithstanding the special microchip techniques developed specifically to study rapidly changing-temperature systems, which are capable of handling cooling rates as fast as million Kelvin’s per second, the accuracy of the produced temperature data remains questionable. For such off-equilibrium, poorly defined temperature-measuring systems, a new term “tempericity” is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Šesták J, Mackenzie RC. The heat/fire concept and its journey from prehistoric time into the third millennium. J Therm Anal Calor. 2001;64:129.

    Article  Google Scholar 

  2. Mareš JJ. On the development of temperature concept. J Therm Anal Calor. 2000;60:1081.

    Article  Google Scholar 

  3. Comenius JA. Disquisitiones de Caloris et Frigoris Natura. Amsterdam: Elsevier; 1659.

    Google Scholar 

  4. Mackenzie RC, Proks I. Comenius and Black as progenitors of thermal analysis. Thermochim Acta. 1985;92:3–12.

    Article  CAS  Google Scholar 

  5. Šesták J, Mareš JJ. From caloric to statmograph and polarography. J Therm Anal Calor. 2007;88:763.

    Article  Google Scholar 

  6. Wendlandt WW. Thermal methods of analysis. New York: Wiley; 1964.

    Google Scholar 

  7. Mackenzie RC. History of thermal analysis. In a special issue of Thermochimica Acta, vol. 73. Amsterdam: Elsevier; 1984. p. 251–367.

  8. Mareš JJ. Phenomenological meaning of temperature. In book: thermodynamic, structural and behavioral aspects of materials accentuating noncrystalline states. In: Šesták J, Holeček M, Málek J, editors. ZČU-OPS Pilsen. 2011. p. 60–78 (ISBN 978-80-87269-20-6).

  9. Barnett MK. The development of thermometry and the temperature concept. Osiris. 1956;12:269–341.

    Article  CAS  Google Scholar 

  10. Tammann G. Über die Anwendung der Thermische Analysen. Z Anorg Chem. 1905;45:289.

    Article  Google Scholar 

  11. Šesták J. Some historical features focused back to the process of European education revealing some important scientists, roots of thermal analysis and the origin of glass research. Chapter 1 in book: thermodynamic, structural and behavioral aspects of materials accentuating noncrystalline states. In: Šesták J, Holeček M, Málek J, editors. ZČU-OPS Pilsen. 2011. p. 30–58 (ISBN 978-80-87269-20-6).

  12. Šesták J, Hubík P, Mareš JJ. Historical roots and development of thermal analysis and calorimetry. Chapter 21 in book “Glassy, amorphous and nano-crystalline materials”. In: Šesták J, Mareš JJ, Hubík P, editors. Berlin: Springer; 2011. p. 347–70.

  13. Basara T, Ilken Z. Thermal analysis of the heating system of the small bath in ancient Phaselis. Energy Build. 1998;27:1–11.

    Article  Google Scholar 

  14. Athienitis AK, Santamouris M. Thermal analysis and design of passive solar buildings, Routledge 2000 (ISBN-13: 978-1902916026).

  15. Šatava V. Dokumentace termografických metod (Documentation on the thermographic methods: a review). Silikáty (Prague). 1957;1:240 (in Czech).

  16. Holba P, Šesták J. Czechoslovak footprints in the development of methods of thermometry, calorimetry and thermal analysis. Ceramics-Silikát. 2012;56:159–67.

    CAS  Google Scholar 

  17. Šesták J, Hubík P, Mareš JJ. Thermal analysis scheme aimed at better understanding of the Earth’s climate changes due to the alternating irradiation. J Therm Anal Calor. 2010;101:567–75.

    Article  Google Scholar 

  18. Mareš JJ, Šesták J, Špička V, Hubík P, Krištofik J. Temperature transformation and relativistic Mosengeil-Ott’s antinomy. Phys E. 2010;42:484–7.

    Article  Google Scholar 

  19. Šesták J. Thermal science and analysis: terms connotation, history, development, and the role of personalities. J Therm Anal Calorim. 2013;113:1049–54.

    Article  Google Scholar 

  20. Golding B. Two chapters on thermotics, in book “Elements of Natural Philosophy: the study of the physical sciences”. London: John Churchill; 1839.

    Google Scholar 

  21. Tykodi RJ. Thermodynamics of steady state. New York: MacMillan; 1967.

    Google Scholar 

  22. Brønsted J. Principles and problems in energetics. New York: Interscience; 1955.

    Google Scholar 

  23. Tykodi RJ. Correspondence: thermodynamics—thermotics as the name of the game. Ind Eng Chem. 1968;60:22.

    Article  CAS  Google Scholar 

  24. Parker PM, editor. Thermal analysis: webster’s timeline history, 1909–2007, Amazon 2012.

  25. Holeček M. Self-measurability in rapid thermal processes. J Therm Anal Calor. 2015;120:217–21.

    Article  Google Scholar 

  26. Landsberg PT. Foundations of thermodynamics. Rev Mod Phys. 1956;28:363–92.

    Article  CAS  Google Scholar 

  27. Callen HB. Thermodynamics: an introduction to thermostatics. New York: Wiley; 1960.

    Google Scholar 

  28. Tribus M. Thermostatics and thermodynamics: an introduction to energy, information and states of matter. New York: Nostrand; 1961.

    Google Scholar 

  29. Zemansky MV. Heat and thermodynamics. Tokyo: McGraw-Hill/Kogakuscha; 1968.

    Google Scholar 

  30. Šesták J, Holba P. Heat inertia and temperature gradient in the treatment of DTA peaks: existing on every occasion of real measurements but until now omitted. J Therm Anal Calorim. 2013;113:1633–43.

    Article  Google Scholar 

  31. Holba P, Šesták J. Heat inertia and its role in thermal analysis. J Therm Anal Calor. 2015;121:303–7.

    Article  CAS  Google Scholar 

  32. Šesták J. Thermometry and calorimetry. Chapter 12 in his book “Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis”. Amsterdam: Elsevier; 2005. p. 344–76.

    Google Scholar 

  33. Boerio-Goates J, Callen JE. Differential thermal methods. Chapter 8 in book “Determination of Thermodynamic Properties”. IN: Rossiter BW, Beatzold RC, editors. New York: Wiley 1992. p. 621–718.

  34. Mareš JJ. Hotness manifold, phenomenological temperature and other related concepts of thermal physics. Chapter 20 in book “Glassy amorphous and nano-crystalline materials”. (Šesták J, Mareš JJ, Hubík P, editors) London: Springer; 2011. p. 327–45.

  35. Mareš JJ. Do we know what temperature is? J Therm Anal Calorim. 2015;120:223–30.

    Article  Google Scholar 

  36. Guggenheim EG. Thermodynamics: an advanced treatment for chemists and physicists. 8th ed. Amsterdam: North Holland; 1986.

    Google Scholar 

  37. Quinn STJ. Temperature. New York: Academic Press; 1990.

    Google Scholar 

  38. Temperature Definition: https://en.wikipedia.org/wiki/Thermodynamic_temperature.

  39. Ou C, Chen J, Wang QA. Temperature definitive and fundamental thermodynamic relations in incomplete statistics. Chaos Solitons Fractals. 2006;28:518–21.

    Article  Google Scholar 

  40. Pogliani L, Berberan-Santos MN. Carathéodory and the axiomatic thermodynamics. J Math Chem. 2000;28:1–3.

    Article  Google Scholar 

  41. Sears FW. A simplification of Carathéodory’s treatment of thermodynamics. Am J Phys. 1963;31:747–52.

    Article  Google Scholar 

  42. Turner LA. Temperature and Carathéodory’s treatment of thermodynamics. J Chem Phys. 1963;38:1163–7.

    Article  CAS  Google Scholar 

  43. McGee TD. Principles and methods of temperature measurement. New York: Wiley; 1988.

    Google Scholar 

  44. Mareš JJ, Hubík P, Šesták J, Špička V, Krištofik J, Stávek J. Phenomenological approach to the caloric theory of heat. Thermochim Acta. 2008;474:16–24.

    Article  Google Scholar 

  45. Šesták J, Mareš JJ, Hubík P, Proks I. Contribution by Lazare and Sadi Carnot to the caloric theory of heat and its inspirative role in alternative thermodynamics. J Therm Anal Calor. 2009;97:679–83.

    Article  Google Scholar 

  46. Callendar HL. The caloric theory of heat and Carnot’s principle. Proc Phys Soc Lond. 1911;23:153.

    Article  Google Scholar 

  47. Thomson W. (Lord Kelvin of Largs): on the absolute thermometric scale founded on Carnot’s theory of the motive power of heat. Phil Mag. 1848;33:313.

    Google Scholar 

  48. Kornilov VV, Makarov BI. Measurement of rapidly changing temperatures of conducting solid bodies by means of thermocouples. Measur Tech. 1963;6:849–51.

    Article  Google Scholar 

  49. Kittl JA, Reitano R, Aziz MJ, Brunco DP, Thompson MO. Time-resolved temperature measurements during rapid solidification of Si–As alloys induced by pulsed-laser melting. J Appl Phys. 1993;73:3725–33.

    Article  CAS  Google Scholar 

  50. Salinga M, Carria E, Kaldenbach A, Bornhöfft M, Benke J, Wuttig M. Measurement of crystal growth velocity in a melt-quenched phase-change material. Nat Commun. 2013;4:2371.

    Article  Google Scholar 

  51. Otooni MA, editor. Elements of rapid solidification: fundamentals and applications. Berlin/Heidelberg: Springer; 2012.

    Google Scholar 

  52. Truesdel C. The tragicomical history of thermodynamics: 1822–1854. NewYork: Springer; 1980.

    Google Scholar 

  53. Kondepudi DK, Prigogine I. Modern thermodynamics: from heat engines to dissipative processes. London: Wiley; 1998.

    Google Scholar 

  54. Müller I. A history of thermodynamics. Berlin/Heidelberg: Springer; 2007.

    Google Scholar 

  55. Sertorio L. Thermodynamics of complex systems. Singapore: World Scientific; 1991.

    Google Scholar 

  56. Vilar JMG, Rubí JM. Thermodynamics “beyond” local equilibrium. Proc Natl Acad Sci USA. 2001;98:11081–4.

    Article  CAS  Google Scholar 

  57. Šesták J, Chvoj Z. Thermodynamics of kinetic phase diagrams. J Therm Anal. 1987;32:325–33.

    Article  Google Scholar 

  58. Chvoj Z, Šesták J, Tříska A, editors. Kinetic phase diagrams: non-equilibrium phase transitions. Amsterdam: Elsevier; 1991.

    Google Scholar 

  59. Šesták J. Kinetic phase diagrams as a consequence of radical changing temperature or particle size. J Therm Anal Calor. 2015;120:129–37.

    Article  Google Scholar 

  60. Rubí JM. Non-equilibrium thermodynamics of small-scale systems. http://www.researchgate.net/publication/222403985_Non-equilibrium_thermodynamics_of_small-scale_systems.

  61. Leitner J, Nano-Thermodynamics (2004): http://ltp.epfl.ch/files/content/sites/ltp/files/shared/Teaching/Master/04-AdvancedNanomaterials/lectures/Thermodynamic.pdf.

  62. Wang GM, Sevick EM, Mittag E, Searles DJ, Evans DJ. Experimental demonstration of violations of the second law of thermodynamics for small systems and short time scales. Phys Rev Lett. 2002;89:050601.

    Article  CAS  Google Scholar 

  63. Šesták J. Thermodynamic basis for the theoretical description and correct interpretation of thermoanalytical experiments. Thermochim Acta. 1979;28:197–227.

    Article  Google Scholar 

  64. Šesták J, Queiroz CA, Mareš JJ. Some aspects of quenching, vitrification, amorphization, disordering and the extent of nano-crystallinity, Chapter 4 in book: glassy, amorphous and nano-crystalline materials. In: Šesták J, Mareš J, Hubík P, editors. Berlin/Heidelberg: Springer; 2013. p. 59–76.

  65. Smyth HT. Temperature distribution during mineral inversion and its significance in DTA. J Am Cer Soc. 1951;34:221–4.

    Article  CAS  Google Scholar 

  66. Holba P, Šesták J, Sedmidubský D. Heat transfer and phase transition at DTA experiments. Chapter 5 in book: thermal analysis of micro-, nano- and non-crystalline materials. Šesták J, Šimon P, editors. Berlin: Springer; 2013. p. 99–134.

  67. Lyon RE, Safronova N, Senese J, Stoliarov SI. Thermokinetic model of sample centered response in non-isothermal analysis. Thermochim Acta. 2012;545:82–9.

    Article  CAS  Google Scholar 

  68. Mareš JJ, Šesták J, Hubík P. Transport constitutive relations, quantum diffusion and periodic reactions. Chapter 14 in book: glassy, amorphous and nano-crystalline materials. In: Šesták J, Mareš JJ, Hubík P, editors. Berlin: Springer; 2011. p. 227–44.

  69. Fourier JBJ. Théorie analytique de la chaleur. Paris (1822), English transl.: The analytical theory of heat. Mineola/New York: Dover Publications; 2003.

  70. Fick AE. Über Diffusion. Annalen der Phys Chem von Pogendorff. 1855;94:59.

    Article  Google Scholar 

  71. Miller DG. Thermodynamics of irreversible processes: experimental verification of the Onsager reciprocal relations. Chem Rev. 1960;60:15–37.

    Article  CAS  Google Scholar 

  72. Stöckel H. Linear and nonlinear generalizations of Onsager’s reciprocity relations treatment of an example of chemical reaction kinetics. Fortsch Physik Progr Phys. 1983;31:165–84.

    Article  Google Scholar 

  73. Schultze D. Differentialthermoanalyze. VEB, Berlin 1969 and Polish translation ˇRóżnicowa analiza termiczna’ PWN, Warsaw 1974.

  74. Hemminger W, Höhne GWH. Grundlagen der Kalorimetrie. Weinheim: Verlag Chemie; 1979.

    Google Scholar 

  75. Hemminger W, Höhne GWH. Calorimetry: fundamentals and practice. Weinheim: Verlag Chemie; 1984.

    Google Scholar 

  76. Adamovsky AS, Minakov AA, Schick C. Scanning microcalorimetry at high cooling rate. Thermochim Acta. 2003;403:55–63.

    Article  CAS  Google Scholar 

  77. Adamovsky SA, Schick C. Ultra-fast isothermal calorimetry using thin film sensors. Thermochim Acta. 2004;415:1–7.

    Article  CAS  Google Scholar 

  78. Minakov AA, Adamovsky SA, Schick C. Non-adiabatic thin-film-chip nanocalorimetry. Thermochim Acta. 2005;432:177–85.

    Article  CAS  Google Scholar 

  79. Minakov AA, Schick C. Ultrafast thermal processing and nanocalorimetry at heating and cooling rates up to 1 MK/s. Rev Sci Instr 2007;78(7):073902e10.

  80. Zhuravlev E, Schmelzer JWP, Wunderlich B, Schick C. Kinetics of nucleation and crystallization in poly(3-caprolactone). Polymer. 2011;52:1983–97.

    Article  CAS  Google Scholar 

  81. Minakov A, Morikawa J, Hashimoto T, Huth H, Schick C. Temperature distribution in a thin-film chip utilized for advanced nanocalorimetry. Meas Sci Technol. 2006;17:199–207.

    Article  CAS  Google Scholar 

  82. Neuenfeld S, Schick C. Verifying the symmetry of differential scanning calorimeters concerning heating and cooling using liquid crystal secondary temperature standards. Thermochim Acta. 2006;446:55–65.

    Article  CAS  Google Scholar 

  83. Lerchner JA, Wolf G, Wolf J. Recent developments in integrated circuit calorimetry. J Therm Anal Calorim. 1999;57:241.

    Article  CAS  Google Scholar 

  84. Merzlyakov M. Integrated circuit thermopile as a new type of temperature modulated calorimeter. Thermochim Acta. 2003;403:65.

    Article  CAS  Google Scholar 

  85. Flynn JH. An analytical evaluation of DSC observing metastability in: status of thermal analysis. In: Menis O, editor. Special NBS Publication No. 338, p. 119, 1970.

  86. Mach E. Die Principien der Wärmelehre. Leipzig: Verlag von JA Barth; 1896.

    Google Scholar 

  87. Mimkes J. Society as many particle system. J Thermal Anal Calor. 2000;60:1055.

    Article  Google Scholar 

  88. Šesták J. Thermodynamics and society—laws versus feelings. Chapter 18 in his book “Heat, Thermal Analysis and Society” by Nucleus, Hradec Kralove, Czechia 2004 (ISBN 8-86225-54-2), p. 298–302.

  89. Šesták J. Thermodynamics, econophysics and societal behavior. Chapter 8 in his book “Science of Heat and Thermophysical Studies: a generalized approach to thermal analysis” by Elsevier, Amsterdam, Netherlands 2005 (ISBN 444 51954 8). p. 230–46.

Download references

Acknowledgements

The present work was supported by Institutional Research Plan of Institute of Physics ASCR, v.v.i., No AV0Z1010052 and developed at its Join Research Laboratory with the New Technologies Centre of the University of West Bohemia in Pilzen (the CENTEM project, Reg. No. CZ.1.05/2.1.00/03.0088 that is co-funded from the ERDF as a part of the MEYS—Ministry of Education, Youth and Sports OP RDI Program and, in the follow-up sustainability stage supported through the CENTEM PLUS LO 1402). Deep thanks are due to the shared effort by J. Czarnecki (formerly with Chan, USA) who should have been settled as a coauthor, as well as long-lasting collaboration activity by J.J. Mareš, P. Hubík (Institute of Physics), P. Holba, M. Holeček (West Bohemian University), J. Málek (University of Pardubice), A. Kállay-Menyhárd (Budapest University of Technology and Economics) and P. Šimon (President of the Slovak Chemical Society, Technical University in Bratislava).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Šesták.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šesták, J. Measuring “hotness”: Should the sensor’s readings for rapid temperature changes be named “tempericity”?. J Therm Anal Calorim 125, 991–999 (2016). https://doi.org/10.1007/s10973-016-5455-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5455-1

Keywords

Navigation