Skip to main content
Log in

Synthesis and characterization of a new energetic salt 1H-pyrazole-1-carboxamidine dinitramide and its thermal properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The new energetic compound 1H-pyrazole-1-carboxamidine dinitramide (PACADN) was synthesized by the reaction of silver dinitramide with 1H-pyrazole-1-carboxamidine hydrochloride. Its structure was confirmed by single-crystal X-ray diffraction, elemental analysis and Fourier transform infrared, ultraviolet–visible and nuclear magnetic resonance spectroscopy analyses. PACADN crystallizes in the orthorhombic space group Pnna. The thermal decomposition was studied with differential scanning calorimetry, thermogravimetry analysis and thermogravimetric tandem infrared spectrum. The results indicated that PACADN exhibits good resistance to thermal decomposition up to 433 K and has 90.24 % mass loss between 433 and 523 K by undergoing exothermic decomposition. The kinetic parameters of the thermal decomposition of PACADN were also obtained from the derivative thermogravimetry analysis data using Kissinger’s method, with E a = 143.2 kJ mol−1. Moreover, the detonation velocity and detonation pressure of PACADN were calculated as 7.2 km s−1 and 21 GPa by applying the Kamlet–Jacobs (as follows).

$$ \begin{aligned} D & = 1.01(N\overline{M}^{1/2} Q^{1/2} )^{1/2} (1 + 1.3\rho ) \\ P & = 1.558\rho^{2} N\overline{M}^{1/2} Q^{1/2} .\\ \end{aligned} $$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Singh RP, Verma RD, Meshri DT, Shreeve JNM. Energetic nitrogen-rich salts and ionic liquids. Angew Chem Int Ed. 2006;45:3584–601.

    Article  CAS  Google Scholar 

  2. Steinhauser G, Klapötke TM. “Green” pyrotechnics: a chemists’ challenge. Angew Chem Int Ed. 2008;47:3330–47.

    Article  CAS  Google Scholar 

  3. Gao H, Shreeve JNM. Azole-based energetic salts. Chem Rev. 2011;111:7377–436.

    Article  CAS  Google Scholar 

  4. Ding P, Wen L, Wang H, Cheng G, Lu C, Yang H. Preparation of nitroform from isopropanol and study of the reaction mechanism. Ind Eng Chem Res. 2014;53:10886–91.

    Article  CAS  Google Scholar 

  5. Zaborenko N, Murphy ER, Kralj JG, Jensen KF. Synthesis and kinetics of highly energetic intermediates by micromixers: direct multistep synthesis of sodium nitrotetrazolate. Ind Eng Chem Res. 2010;49:4132–9.

    Article  CAS  Google Scholar 

  6. Chavez DE, Hiskey MA. Preparation of 1-substituted-3, 3-dinitroazetidines. J Energ Mater. 1999;17:233–52.

    Article  Google Scholar 

  7. Zhang Q, Shreeve JNM. Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chem Rev. 2014;114:10527–74.

    Article  CAS  Google Scholar 

  8. Qi C, Li SH, Li YC, Wang Y, Zhao XX, Pang SP. Synthesis and promising properties of a new family of high-nitrogen compounds: polyazido- and polyamino-substituted N, N′-Azo-1, 2, 4-triazoles. Chem Eur J. 2012;18:16562–70.

    Article  CAS  Google Scholar 

  9. Heintz T, Pontius H, Aniol J, Birke C, Leisinger K, Reinhard W. Ammonium dinitramide (ADN)—prilling, coating, and characterization. Propellants Explos Pyrotech. 2009;34:231–8.

    Article  CAS  Google Scholar 

  10. Goede P, Wingborg N, Bergman H, Latypov NV. Synthesis and analyses of N,N-dinitrourea. Propellants Explos Pyrotech. 2001;26:17–20.

    Article  CAS  Google Scholar 

  11. Santhosh G, Venkatachalam S, Kanakavel M, Ninan KN. Study on the formation of dinitramide using mixed nitrating agents. Indian J Chem Technol. 2002;9:223–6.

    CAS  Google Scholar 

  12. Nazeri GH, Mastour R, Fayaznia M, Keyghobadi P. Synthesis of ammonium dinitramide by nitration of potassium and ammonium sulfamate. The effect of sulfamate conterion on ADN purity. Iran J Chem Chem Eng. 2008;27:85–9.

    CAS  Google Scholar 

  13. Shlyapochnikov VA, Tafipolsky MA, Tokmakov IV, Baskir ES, Anikin OV, Strelenko YA, Luk’yanov OA, Tartakovsky VA. On the structure and spectra of dinitramide salts. J Mol Struct. 2001;559:147–66.

    Article  CAS  Google Scholar 

  14. Ang HG, Fraenk W, Karaghiosoff K, Klapötke TM, Mayer P, Nöth H, Sprott J, Warchhold M. Synthesis, characterization, and crystal structures of Cu, Ag, and Pd dinitramide salts. Z Anorg Allg Chem. 2002;628:2894–900.

    Article  CAS  Google Scholar 

  15. Östmark H, Bemm U, Bergman H, Langlet A. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications. Thermochim Acta. 2002;384:253–9.

    Article  Google Scholar 

  16. Chavez DE, Tappan BC, Mason BA. Synthesis and energetic properties of bis-(Triaminoguanidinium)-3, 3′-dinitro-5, 5′-azo-1, 2, 4-triazolate (TAGDNAT): a new high-nitrogen material. Propellants Explos Pyrotech. 2009;34:475–9.

    CAS  Google Scholar 

  17. Tziveleka LA, Psarra AMG, Tsiourvas D, Paleos CM. Synthesis and characterization of guanidinylated poly (propylene imine) dendrimers as gene transfection agents. J Control Release. 2007;117:137–46.

    Article  CAS  Google Scholar 

  18. Perreault NN, Halasz A, Thiboutot S, Ampleman G, Hawari J. Joint photomicrobial process for the degradation of the insensitive munition N-guanylurea-dinitramide (FOX-12). J Hawari Environ Sci Technol. 2013;47:5193–8.

    Article  CAS  Google Scholar 

  19. Klapötke TM, Mayer P, Schulz A, Weigand JJ. 1,5-Diamino-4-methyltetrazolium dinitramide. J Am Chem Soc. 2005;127:2032–3.

    Article  Google Scholar 

  20. Ritchie JP, Zhurova EA, Martin A, Pinkerton AA. Dinitramide ion: robust molecular charge topology accompanies an enhanced dipole moment in its ammonium salt. J Phys Chem B. 2003;107:14576–89.

    Article  CAS  Google Scholar 

  21. Sitzmann ME, Gilardi R, Butcher RJ, Koppes WM, Stern AG, Trasher JS, Trivedi NJ, Yang ZY. Pentafluorosulfanylnitramide salts. Inorg Chem. 2000;39:843–50.

    Article  CAS  Google Scholar 

  22. Jin B, Shen J, Peng RF, Shu YJ, Chu SJ, Dong HS. Synthesis, characterization, thermal stability and mechanical sensitivity of polyvinyl azidoacetate as a new energetic binder. J Polym Res. 2012;19:1–9.

    Article  Google Scholar 

  23. Grover J, Kumar V, Sobhia ME, Jachak SM. Synthesis, biological evaluation and docking analysis of 3-methyl-1-phenylchromeno [4, 3-c] pyrazol-4 (1H)-ones as potential cyclooxygenase-2 (COX-2). Chem Lett. 2014;24:4638–42.

    Article  CAS  Google Scholar 

  24. Craig GA, Roubeau O, Aromí G. Spin State switching in 2, 6-bis (pyrazol-3-yl) pyridine (3-bpp) based Fe(II) complexes. Coord Chem Rev. 2014;269:13–31.

    Article  CAS  Google Scholar 

  25. Zhang ZJ, Wang G, Luo N, Huang MH, Jin MM, Luo YJ. Thermal decomposition of energetic thermoplastic elastomers of poly (glycidyl nitrate). J Appl Polym Sci. 2014;131:40965–70.

    Google Scholar 

  26. Gong WL, Jin B, Peng RF, Deng NM, Zheng RZ, Chu SJ. Synthesis and characterization of [60] fullerene-poly (glycidyl nitrate) and its thermal decomposition. Ind Eng Chem Res. 2015;54:2613–8.

    Article  CAS  Google Scholar 

  27. Li LP, Sun XF, Qiu XP, Xu JX, Li GS. Nature of catalytic activities of CoO nanocrystals in thermal decomposition of ammonium perchlorate. Inorg Chem. 2008;47:8839–46.

    Article  CAS  Google Scholar 

  28. Yang Q, Chen SP, Xie G, Gao SL. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate. J Hazard Mater. 2011;197:199–203.

    Article  CAS  Google Scholar 

  29. Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J Chem Phys. 1968;48:23–35.

    Article  CAS  Google Scholar 

  30. Kissinger HE, Chem A. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  31. Ghule VD. Computational screening of nitrogen-rich energetic salts based on substituted triazine. J Phys Chem C. 2013;117:16840–9.

    Article  CAS  Google Scholar 

  32. Jenkins HDB, Glasser L. Standard absolute entropy, values from volume or density, 1. inorganic materials. Inorg Chem. 2003;42:8702–8.

    Article  CAS  Google Scholar 

  33. Suceska M. Calculation of the detonation properties of C–H–N–O explosives. Propellants Explos Pyrotech. 1991;16:197–202.

    Article  CAS  Google Scholar 

  34. Curtiss LA, Raghavachari K, Redfern PC, Pople JA. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. J Chem Phys. 1997;106:1063–79.

    Article  CAS  Google Scholar 

  35. Lu M, Zhao G. Theoretical studies on high energetic density polynitroimidazopyridines. J Braz Chem Soc. 2013;24:1018–26.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (51372211), Defence Science and Technology Project (A3120133002), Applied Basic Research Program of Sichuan Province (2014JY0170) and Southwest University of Science and Technology Researching Project (13zx9107, 13zxfk09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Jin, B., Peng, R. et al. Synthesis and characterization of a new energetic salt 1H-pyrazole-1-carboxamidine dinitramide and its thermal properties. J Therm Anal Calorim 124, 1431–1439 (2016). https://doi.org/10.1007/s10973-016-5315-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-016-5315-z

Keywords

Navigation