Skip to main content
Log in

Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Microfibrillar composites (MFC) are advanced systems with reinforcement formed in situ by melt or cold drawing of suitable polymer blends. In the case of biodegradable poly (ɛ-caprolactone)/poly (lactic acid) (PCL/PLA) system, formation of microfibrillar structure by melt drawing is only possible by modification of the polymer components by clay. The effect of clay is quite complex; this study is focused on the effect of in situ formed fibrillar structure of PLA and clay in MFC with the PCL matrix on crystallinity and glass transition of both polymer components. The DSC analysis shows that clay addition to neat PCL, its blending with PLA, and addition of clay to the PCL/PLA blend increase PCL crystallinity. Clay addition and blending with PCL dramatically increase crystallinity of originally almost amorphous PLA. The non-isothermal PCL crystallization kinetics evaluated by the new recently proposed method reveals pronounced nucleation effect of clay addition and blending on PCL crystallization. An indication has been found of a negative correlation between maximum crystallization rate of PCL and its crystallinity. The glass transition temperature T g of both components evaluated by DMA in the undrawn system mostly decreases with clay addition and increases with drawing. These effects are more significant for PLA due to its fibrillar structure. T g is affected by the mixing protocol, as a result of different course of clay migration between components and localization, especially in the interfacial area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Woodruff MA, Hutmacher DW. The return of a forgotten polymer: polycaprolactone in the 21st century. Prog Polym Sci. 2010;35:1217–56.

    Article  CAS  Google Scholar 

  2. Iwata T, Doi Y. Morphology and enzymatic degradation of poly(ϵ-caprolactone) single crystals: does a polymer single crystal consist of micro-crystals? Polym Int. 2002;51:852–8.

    Article  CAS  Google Scholar 

  3. Kratochvíl J, Rotrekl J, Kaprálková L, Hromádková J, Kelnar I. Epoxy/poly(ϵ-caprolactone) nanocomposites: effect of transformations of structure on crystallization. J Appl Polym Sci. 2013;130:3197–207.

    Article  Google Scholar 

  4. Delpouve N, Delbreilh L, Stoclet G, Saiter A, Dargent E. Structural dependence of the molecular mobility in the amorphous fractions of polylactide. Macromolecules. 2014;47:5186–97.

    Article  CAS  Google Scholar 

  5. Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly(lactic acid). Adv Mater. 2014;26:6905–11.

    Article  CAS  Google Scholar 

  6. Wu CP, Wang CC, Chen CY. Enhancing the PLA crystallization rate by incorporating a polystyrene-block-poly(methyl methacrylate) block copolymer: synergy of polystyrene and poly(methyl methacrylate) segments. J Polym Sci Polym Phys. 2014;52:823–32.

    Article  CAS  Google Scholar 

  7. Yeh JT, Wu CJ, Tsou CH, Chai WL, Chow JD, Huang CJ, Chen KN, Wu CS. Study of the crystallization, miscibility, morphology, properties of poly(lactic acid)/poly(ε-caprolactone) blends. Polym Plast Technol Eng. 2009;4:571–8.

    Article  Google Scholar 

  8. Bai H, Huang C, Xiu H, Gao Y, Zhang Q, Fu Q. Toughening of poly(L-lactide) with poly(ϵ-caprolactone): combined effects of matrix crystallization and impact modifier particle size. Polymer. 2013;54:5257–66.

    Article  CAS  Google Scholar 

  9. As’habi L, Hassan Jafari S, Khonakdar HA, Häussler L, Wagenknecht U, Heinrich G. Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: synergistic role of LLDPE and clay. Thermochim Acta. 2013;565:102–13.

    Article  Google Scholar 

  10. Wu D, Lin D, Zhang J, Zhou W, Zhang M, Zhang Y, Wang D, Lin B. Selective localization of nanofillers: effect on morphology and crystallization of PLA/PCL blends. Macromol Chem Phys. 2011;212:613–26.

    Article  CAS  Google Scholar 

  11. López-Rodríguez N, López-Arraiza A, Meaurio E, Sarasua JR. Crystallization, morphology, and mechanical behavior of polylactide/poly(ε-caprolactone) blends. Polym Eng Sci. 2006;46:1299–308.

    Article  Google Scholar 

  12. Zhang X, Schneider K, Liu G, Chen J, Brüning K, Wang D, Stamm M. Structure variation of tensile-deformed amorphous poly(L-lactic acid): effects of deformation rate and strain. Polymer. 2011;52:4141–9.

    Article  CAS  Google Scholar 

  13. Touny AH, Lawrence JG, Jones AD, Bhaduri SB. Effect of electrospinning parameters on the characterization of PLA/HNT nanocomposite fibres. J Mater Res. 2010;25:857–65.

    Article  CAS  Google Scholar 

  14. Ju D, Han L, Li F, Chen S, Dong L. Crystallization, mechanical properties, and enzymatic degradation of biodegradable poly(ε-caprolactone) composites with poly(lactic acid) fibres. Polym Compos. 2013;34:1745–52.

    Article  CAS  Google Scholar 

  15. Neppalli R, Marega C, Marigo A, Bajgai MP, Kim HY, Causin V. Poly(ε-caprolactone) filled with electrospun nylon fibres: a model for a facile composite fabrication. Eur Polym J. 2010;46:968–76.

    Article  CAS  Google Scholar 

  16. Fakirov S, Bhattacharyya D, Shields R. Nanofibril reinforced composites from polymer blends. Coll Surf A: Physicochem Eng Asp. 2008;313:2–8.

    Article  Google Scholar 

  17. Pesneau I, Ait-Kadi A, Bousmina M, Michel A, Cassagnau P. From polymer blends to in situ polymer/polymer composites: morphology control and mechanical properties. Polym Eng Sci. 2002;42:1990–2004.

    Article  CAS  Google Scholar 

  18. Evstatiev M, Fakirov S. Microfibrillar reinforcement of polymer blends. Polymer. 1992;33:877–80.

    Article  CAS  Google Scholar 

  19. Kelnar I, Fortelný I, Kaprálková L, Kratochvíl J, Nevoralová M. Effect of layered silicates on fibril formation and properties of PCL/PLA microfibrillar composites. J Appl Polym Sci. 2016. doi:10.1002/APP.43061.

    Google Scholar 

  20. Kratochvíl J, Kelnar I. A simple method of evaluating non-isothermal crystallization kinetics in multicomponent polymer systems. Polym Test. 2015;47:79–86.

    Article  Google Scholar 

  21. Guo Q, Groeninckx G. Crystallization kinetics of poly(ε-caprolactone) in miscible thermosetting polymer blends of epoxy resin and poly(ε-caprolactone). Polymer. 2001;42:8647–55.

    Article  CAS  Google Scholar 

  22. Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33:820–52.

    Article  CAS  Google Scholar 

  23. Lai SM, Wu SH, Lin GG, Don TM. Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites. Eur Polym J. 2014;52:193–206.

    Article  CAS  Google Scholar 

  24. Kelnar I, Kaprálková L, Kratochvíl J, Kotek J, Kobera L, Rotrekl J, Hromádková J. Effect of nanofiller on the behavior of a melt-drawn HDPE/PA6 microfibrillar composite. J Appl Polym Sci. 2015;132:41868.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (Grant No. 13-15255S).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kelnar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelnar, I., Kratochvíl, J. & Kaprálková, L. Crystallization and thermal properties of melt-drawn PCL/PLA microfibrillar composites. J Therm Anal Calorim 124, 799–805 (2016). https://doi.org/10.1007/s10973-015-5142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-5142-7

Keywords

Navigation