Skip to main content
Log in

Thermal decomposition of fire-retarded wood flour/polypropylene composites

Kinetic property and degradation mechanisms

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The influence of magnesium hydroxide (MH), expandable graphite (EG), and ammonium polyphosphate (APP) on the kinetic property and degradation mechanisms of wood flour/polypropylene composites (WPPC) was investigated using thermogravimetric (TG) analysis. The kinetic parameters were determined using Kissinger and Flynn–Wall–Ozawa (F–W–O) methods. Criado method was used to investigate the probable degradation mechanisms. Thermogravimetric results indicated that EG and APP accelerated the degradation process of wood flour and promoted an increase in the conversion value at low temperatures. The activation energy values obtained through Kissinger and F–W–O methods were 161–178 kJ mol−1 (wood flour degradation stage) and 234–305 kJ mol−1 (polypropylene degradation stage) for WPPC with or without fire retardants. The degradation mechanism of wood flour occurred by diffusion in three-dimensional processes when the conversion value was below 0.8. Polypropylene and fire retardants had no direct influence on the degradation mechanism of wood flour. In the polypropylene decomposition stage, the degradation of WPPC without fire retardant followed phase-boundary-controlled reaction mechanism. However, the behavior of WPPC incorporation of MH, EG, or APP was governed by nucleation and growth mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. La Mantia FP, Morreale M. Green composites: a brief review. Compos Part A Appl Sci Manuf. 2011;42:579–88.

    Article  Google Scholar 

  2. Hazarika A, Maji TK. Thermal decomposition kinetics, flammability, and mechanical property study of wood polymer nanocomposite. J Therm Anal Calorim. 2014;115:1679–91.

    Article  CAS  Google Scholar 

  3. Li B, He J. Investigation the mechanical property, flame retardancy and thermal degradation of LLDPE–wood fiber composites. Polym Degrad Stab. 2004;83:241–6.

    Article  CAS  Google Scholar 

  4. Pearce EM, Khanna YP, Reucher D. Thermal characterization of polymeric materials. New York: Academic Press; 1981.

    Google Scholar 

  5. Ayrilmis N, Akebulut T, Dundar T, White RH, Mengeloglu F, Buyuksari U, Candan Z, Avci E. Effect of boron and phosphate compounds on physical, mechanical, and fire properties of wood–polypropylene composites. Constr Build Mater. 2012;33:62–9.

    Article  Google Scholar 

  6. Sain M, Park SH, Suhara F, Law S. Flame retardant and mechanical properties of natural fiber–PP composites containing magnesium hydroxide. Polym Degrad Stab. 2004;83(2):363–7.

    Article  CAS  Google Scholar 

  7. Stark NM, White RH, Mueller SA, Osswald TA. Evaluation of various fire retardants for use in wood flour–polyethylene composites. Polym Degrad Stab. 2010;95:1903–10.

    Article  CAS  Google Scholar 

  8. Naumann A, Seefeldt H, Stephan I, Braun U, Noll M. Material resistance of flame retarded wood–plastic composites against fire and fungal decay. Polym Degrad Stab. 2012;97:1189–96.

    Article  CAS  Google Scholar 

  9. Yoshihiko A, Sakae N, Yuta T, Kyouhei T, Toshikazu U, Tatsuya T. Improvement on fire retardancy of wood flour/polypropylene composites using various fire retardants. Polym Degrad Stab. 2014;100:79–85.

    Article  Google Scholar 

  10. Fang YQ, Wang QW, Guo CG, Song YM, Cooper PA. Effect of zinc borate and wood flour on thermal degradation and fire retardancy of polyvinyl chloride (PVC) composites. J Anal Appl Pyrol. 2013;100:230–6.

    Article  CAS  Google Scholar 

  11. Azwa ZN, Yousif BF, Manalo AC, Karunasena W. A review on the degradability of polymeric composites based on natural fibres. Mater Des. 2013;47:424–42.

    Article  CAS  Google Scholar 

  12. Seefeldt H, Braun U, Wagner MH. Residue stabilization in the fire retardancy of wood–plastic composites: combination of ammonium polyphosphate, expandable graphite, and red phosphorus. Macromol Chem Phys. 2012;213:2370–7.

    Article  CAS  Google Scholar 

  13. Gwon JG, Lee SY, Kim JH. Thermal degradation behavior of polypropylene base wood plastic composites hybridized with metal (aluminum, magnesium) hydroxides. J Appl Polym Sci. 2014;131(7):40120.

    Article  Google Scholar 

  14. Bai G, Guo CG, Li LP. Synergistic effect of intumescent flame retardant and expandable graphite on mechanical and flame-retardant properties of wood flour–polypropylene composites. Constr Build Mater. 2014;50:148–53.

    Article  Google Scholar 

  15. Nikolaeva M, Karki AT. A review of fire retardant processes and chemistry, with discussion of the case of wood–plastic composites. Baltic For. 2011;17(2):314–26.

    Google Scholar 

  16. Seefeldt H, Braun U. A new flame retardant for wood materials tested in wood–plastic composites. Macromol Mater Eng. 2012;297:814–20.

    Article  CAS  Google Scholar 

  17. Song YM, Wang QW, Gong L, Li CT. Synergistic effects of expandable graphite with ammonium polyphosphate on flame retardancy of wood flour/polypropylene composites. Sci Silvae Sin. 2011;47(7):145–50.

    CAS  Google Scholar 

  18. Liodakis S, Bakirtzis D, Dimitrakopoulos AP. Autoignition and thermogravimetric analysis of forest species treated with fire retardants. Thermochim Acta. 2003;399:31–42.

    Article  CAS  Google Scholar 

  19. Yao F, Wu QL, Lei Y, Guo WH, Xu YJ. Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym Degrad Stab. 2008;93:90–8.

    Article  CAS  Google Scholar 

  20. Gronli MG, Varhegyi G, Blasi CD. Thermogravimetric analysis and devolatilization kinetics of wood. Ind Eng Chem Res. 2002;41:4201–8.

    Article  CAS  Google Scholar 

  21. Kumar A, Wang LJ, Dzenis YA, Jones DD, Hanna MA. Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy. 2008;32:460–7.

    Article  CAS  Google Scholar 

  22. Poletto M, Zattera AJ, Santana RMC. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol. 2012;126:7–12.

    Article  CAS  Google Scholar 

  23. Aboulkas A, El Harfi K, El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: pyrolysis kinetics and mechanisms. Energy Convers Manag. 2010;51:1363–9.

    Article  CAS  Google Scholar 

  24. Bianchi O, Martins JDN, Fiorio R, Oliveira RVB, Canto LB. Changes in activation energy and kinetic mechanism during EVA crosslinking. Polym Test. 2011;30:616–24.

    Article  CAS  Google Scholar 

  25. Carrasco F. The evaluation of kinetic-parameters from thermogravimetric data—comparison between established methods and the general analytical equation. Thermochim Acta. 1993;213:115–34.

    Article  CAS  Google Scholar 

  26. Criado JM. Kinetic analysis of DTG data from master curves. Termochim Acta. 1978;24:186–9.

    Article  CAS  Google Scholar 

  27. Wang QW, Li J, Winandy JE. Chemical mechanism of fire retardant of boric acid on wood. Wood Sci Technol. 2004;38(5):375–89.

    Article  CAS  Google Scholar 

  28. Yang J, Miranda R, Roy C. Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers. Polym Degrad Stab. 2001;73:455–61.

    Article  Google Scholar 

  29. Park JW, Oh SC, Lee HP, Kim HT, Yoo KO. A kinetic analysis of thermal degradation of polymers using a dynamic method. Polym Degrad Stab. 2000;67:535–40.

    Article  CAS  Google Scholar 

  30. Wu Y, Dollimore D. Kinetic studies of thermal degradation of natural cellulosic materials. Thermochim Acta. 1998;324:49–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Special Funds for Scientific Research on Public Causes of Forestry (No. 201204802) and Korea Forest Research Institute. The authors also express thanks to China Scholarship Council (CSC) for the scholarship to study at Louisiana State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Wu or Qingwen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Wu, Q., Xie, Y. et al. Thermal decomposition of fire-retarded wood flour/polypropylene composites. J Therm Anal Calorim 123, 309–318 (2016). https://doi.org/10.1007/s10973-015-4971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4971-8

Keywords

Navigation