Skip to main content
Log in

Studying the thermal decomposition of carvedilol by coupled TG-FTIR

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal analytical behavior of carvedilol (1-(9H-carbazol-4-yloxy)-3-[[2-(2-methoxyphenoxy)ethyl]amine]-2-propanol), a β-blocker antihypertensive drug, has been investigated using thermoanalytical techniques thermogravimetry, derivative thermogravimetry, differential thermal analysis (DTA) and differential scanning calorimetry (DSC). Evolved gas analysis was also performed using thermogravimetry coupled to infrared spectroscopy. Such studies revealed that carvedilol decomposes after melting, releasing 2-methoxyphenol and ammonia in both nitrogen and air atmospheres. In inert atmosphere, the decomposition took place as a single mass loss event without residue at the end of the experiment, while in air, the first step resulted in carbonaceous residue that burnt completely in the second step. DTA and DSC curves demonstrated that the sample melts around 100 °C (ΔH fus = 126.6 J g−1, ΔS fus = 0.32 J K−1 g−1) without recrystallization on cooling. An endothermic event observed previously to the melt has been attributed to concomitant carvedilol forms in the sample. Solid-state decomposition kinetic investigation using the Flynn–Wall–Ozawa approach revealed activation energy of E a = 243 ± 32 kJ mol−1 and Arrhenius pre-exponential factor log A = 22 ± 3 min−1. Finally, a tentative mechanism for carvedilol thermal decomposition is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Budavari S, editor. The Merck index: an encyclopedia of chemicals, drugs and biologicals. 12th ed. White House Station: Merck; 1996.

  2. Golan DE, Tashjian AH, Armstrong AW. Princípios de farmacologia: a base fisiopatológica da farmacoterapia. 2nd ed. Rio de Janeiro: Guanabara Koogan; 2009.

    Google Scholar 

  3. Lanzanova FA, Aregenta D, Arend MZ, Brum-Jr L, Cardoso SG. LC and LC–MS evaluation of stress degradation behavior of carvedilol. J Liq Chromatogr Rel Technol. 2009;32:526–43.

    Article  CAS  Google Scholar 

  4. Belal TB, Shaalan A, El Yazbi FA, Elonsy SM. Validated stability-indicating HPLC–DAD determination of the antihypertensive binary mixture of carvedilol and hydrochlorothiazide in tablet dosage forms. Chromatographia. 2013;76:1707–20.

    Article  CAS  Google Scholar 

  5. Vogt FG, Copley RCB, Mueller RL, Spoors GP, Cacchio TN, Carlton RA, Katrincic LM, Kennady JM, Parson S, Chetina OV. Isomorphism, disorder and hydration in the crystal structures of racemic and single-enantiomer carvedilol phosphate. Cryst Growth Des. 2010;10:2713–33.

    Article  CAS  Google Scholar 

  6. Kovačič B, Vrečer F, Planinšek O. Solid dispersions of carvedilol with porous silica. Chem Pharm Bull. 2011;59:427–33.

    Article  Google Scholar 

  7. Planinšek O, Kovačič B, Vrečer F. Carvedilol dissolution improvement by preparation of solid dispersions with porous silica. Int J Pharm. 2011;406:41–8.

    Article  Google Scholar 

  8. Lyons JG, Hallinan M, Kennedy JE, Devine DM, Geever LM, Blackie P, Higginbotham CL. Preparation of monolithic matrices for oral drug delivery using a supercritical fluid assisted hot melt extrusion process. Int J Pharm. 2007;329:62–71.

    Article  CAS  Google Scholar 

  9. Wendlandt WW. Thermal Analysis. In: Elving PJ, Winefordner JD, editors. Analytical chemistry, vol. 19. 3rd ed. New York: Wiley; 1986.

    Google Scholar 

  10. Lever T, Hains P, Rouquerol J, Charsley EL, Eckeren PV, Burlett DJ. ICTAC nomenclature of thermal analysis (IUPAC) recommendations. Pure Appl Chem. 2014;86:545–53.

    Article  CAS  Google Scholar 

  11. Talvani A, Bahia MT, Sá-Barreto LCL, Lima EM, Cunha-Filho MSS. Carvedilol: decomposition kinetics and compatibility with pharmaceutical excipients. J Therm Anal Calorim. 2014;115:2501–6.

    Article  CAS  Google Scholar 

  12. Shayanfar A, Jouyban A. Drug–drug coamorphous systems: characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J Pharm Innov. 2013;8:218–28.

    Article  Google Scholar 

  13. Borba PAA, Vecchia DD, Riekes MK, Pereira RN, Tagliari MP, Silva MAS, Cuffini SL, Campos CEM, Stulzer HK. Pharmaceutical approaches involving carvedilol characterization, compatibility with different excipients and kinetic studies. J Therm Anal Calorim. 2014;115:2507–15.

    Article  CAS  Google Scholar 

  14. Ratkai Z, Barkoczy J, Simig G, Gregor T, Vereczkey G, Nemeth N, Nagy K, Cselenyak J, Szabo T, Balazs L, Greff I, Nag PK, Seres P. Process and intermediates for preparing 1-[9′H-carbazol-4′-yloxy]-3-[2″-(2‴-methoxy–phenoxy)ethyl)-amino]-propan-2-ol [carvedilol]. 1999. EP 0918055 A1, 05.26.

  15. Bubendorf AG, Gabel RD, Henning M, Krimmer S, Neugbauer G, Preis W, Wiel A. Pseudopolymorphic forms of carvedilol. 2007. EP 1432681 B1.08.22.

  16. Zupet R, Grcman M, Smrkol M. New crystalline forms of carvedilol. 2005. WO 2005/021504 A2, 10 03.

  17. Hildesheim J, Finogueev S, Aranhime R, Dolitzky B, Bem-Valid S, Kor I. Carvedilol. 2006. US 7,056,942 B2, 06.06.

  18. Hildesheim J, Finogueev S, Aranhime R, Dolitzky B, Bem-Valid S, Kor I. Carvedilol. 2009. US 7,606,274 B2, 20.10.

  19. Hildesheim J, Finogueev S, Aranhime R, Dolitzky B, Bem-Valid S, Kor I. Carvedilol. 2009. US 7,485,663 B2, 03.02.

  20. Lifshitz I, Wizel S. Crystalline forms of carvedilol and processes for their preparation. 2007. US 20070043099 A1. 22.02.

  21. Kor-Sade I, Wizel S. Crystalline solids of carvedilol and processes for their preparation. 2009. US 7598396 B2. 06.10.

  22. Chen W, Galop M, Oh CK. Carvedilol polymorph. 2004. US 0152756A1, 05.08.

  23. Ozawa T. A new method for analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  24. Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. J Polym Sci Part B Polym Phys. 1966;4:323–8.

    Article  CAS  Google Scholar 

  25. Nicolet-ThermoScientific Co. Nicolet EPA Vapor Phase database. Omnic 8.0 software. ThermoScientific, Madison.

  26. Amorim PHO, Ferreira APG, Machado LCM, Cervini P, Cavalheiro ETG. Investigation on the thermal behavior of β-blockers antihypertensives atenolol and nadolol using TG/DTG, DTA, DSC, and TG-FTIR. J Therm Anal Calorim. 2015;120:1035–42.

    Article  CAS  Google Scholar 

  27. Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Brazilian Foundations Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP) and Núcleo de Pesquisa em Ciência e Tecnologia de Biorecursos (CiTecBio/NAPs-PRP/USP) by research grant and Santander-USP fellowship to RCG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. G. Cavalheiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallo, R.C., Ferreira, A.P.G., Castro, R.E.A. et al. Studying the thermal decomposition of carvedilol by coupled TG-FTIR. J Therm Anal Calorim 123, 2307–2312 (2016). https://doi.org/10.1007/s10973-015-4931-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4931-3

Keywords

Navigation