Skip to main content
Log in

Solvothermal synthesis, thermal and adsorption properties of metal-organic frameworks Zn and CoZn(DPB)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

New mononuclear and hetero-binuclear MOFs derived from the reaction of 1,4-bis[(3,5-dimethyl)pyrazole-4-yl]benzene (H2DPB) with zinc nitrate or mixture of zinc and cobalt nitrates have been synthesized solvothermally from DMF or ethanol. The crystal structure of Zn(DPB) (1) indicates that it crystallizes in cubic system, with cell parameters, a = b = c = 6.7536 Å and α = β = γ = 90°. Tetrahedral structure around 1D Zn atoms run parallel to b axis is observed. Zn(DPB) (2) isolated from DMF crystallizes in monoclinic system, with cell parameters, a = 14.8865, b = 9.8392 and c = 10.8285 Å and α = γ = 90o and β = 93.05°. The results showed that Zn(DPB) (1) and CoZn(DPB) (3) MOFs isolated from ethanol are thermally and mechanically more stable than Zn(DPB) (2) and CoZn(DPB) (4). Pore texture shows that the highest BET surface area belongs to CoZn (DPB) (3). The compound Zn(DPB) (1) does not lose its crystallinity even after applying 0.2 GPa stress. Adsorption of nitrogen indicated the presence of type I isotherm characteristic to permanent microporosity. Compounds (1) and (3) do not lose their porosity under mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jiang C, Song L, Jiao CL, Zhang J, Sun L, Xu F, Zhang H, Xu Q, Gabelica Z. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II) 2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103:1095–103.

    Article  CAS  Google Scholar 

  2. Alghool S, Slebodnick C, Karpin G. Supramolecular structure of Cu(II) and Zn(II) complexes based on 2,2′:6′,2″-terpyridine, thermal and biological studies. J Therm Anal Calorim. 2014. doi:10.1007/s10973-014-4235-z.

    Google Scholar 

  3. Vargas DP, Giraldo L, Moreno-Piraján JC. Calorimetric study of the CO2 adsorption on carbon materials. J Therm Anal Calorim. 2014;117:1299–309.

    Article  CAS  Google Scholar 

  4. Tonigold M, Lu Y, Bredenkotter B, Rieger B, Bahnmuller S, Longstien G, Volkmer D. Heterogeneous catalytic oxidation by MFU-1: a cobalt(II)-containing metal-organic framework. Angew Chem Int Ed. 2009;48:7546–7550.

  5. Ernest S. Advances in nanoporous materials, vol. 1. 1st ed. Elsevier: Amsterdam; 2009.

    Google Scholar 

  6. Sun Y, Yu H, Wang L, Ding W, Ji J, Chen Y, Ren F, Tian Z, Zhao Y, Huang L, Ren P, Tong R. Synthesis of three coordination polymer microspheres and their application in hydrogen storage. J Alloys Compd. 2014;585:667–73.

    Article  CAS  Google Scholar 

  7. Fernández-Zapico E, Montejo-Bernardo J, D’Vries R, García JR, García-Granda S, Rodríguez Fernández J, Pedro I, Blanco JA. Phase stability and magnetic properties of a new cobalt(II) coordination polymer based on 2-carboxyethylphosphonate and 1,10′-phenanthroline. J Alloys Compd. 2012;536:S507–10.

    Article  Google Scholar 

  8. Tabacaru A, Pettinari C, Masciocchi N, Galli S, Marchetti F, Angjellari M. Pro-porous coordination polymers of the 1,4-bis((3,5-dimethyl-1Hpyrazol-4-yl)-methyl)benzene ligand with late transition metals. Inorg Chem. 2011;50:11506–13.

    Article  CAS  Google Scholar 

  9. Yaghi OM, Li G. Selective binding and removal of guests in a microporous metal-organic framework. Nature. 1995;378:703–6.

    Article  CAS  Google Scholar 

  10. Saha D, Zacharia R, Lafi L, Cossement D, Chahine R. Synthesis, characterization and hydrogen adsorption on metal-organic frameworks Al, Cr Fe and Ga-BTB. Chem Eng J. 2011;17:1517–25.

    Google Scholar 

  11. Saha D, Wei Z, Deng S. Hydrogen adsorption equilibrium and kinetics in metal-organic framework (MOF-5) synthesized with DEF approach. Sep Purif Technol. 2009;64:7479–587.

    Article  Google Scholar 

  12. Rurack K, Martinez-Manez R. The supramolecular chemistry of organic-inorganic hybrid materials. New york: Wiley; 2010.

    Book  Google Scholar 

  13. Ramirez F, Bhatia SB, Patwardhan AV, Smith CP. Molecular rearrangements during solvolyses of pentaoxyphosphoranes polyketones derived from phthalaldehyde and terephthalaldehyde. J Org Chem. 1967;32:3547–51.

    Article  CAS  Google Scholar 

  14. Putz H, Schon JC, Jansen M. Combined method for ab initio structure solution from powder diffraction data. J Appl Cryst. 1999;32:864–70.

    Article  CAS  Google Scholar 

  15. Crystal Impact GbR, Endeavour 1.7, Internet: http://www.crystalimpact.com/endeavour.

  16. Hyperchem 7, developed by Hypercube Inc. 2002.

  17. Stewart JJP. Optimization of Parameters for Semiempirical Methods II. Applications. J Comput Chem. 1989;10:221.

    Article  CAS  Google Scholar 

  18. Nakamoto K. Infrared spectra of inorganic and coordination compounds. NewYork: John Wiley; 1970.

    Google Scholar 

  19. Ye S, Neese F. Quantum chemical studies of C-H activation reactions by high-valent nonheme iron centers. Curr Opin Chem Biol. 2009;13:89.

    Article  CAS  Google Scholar 

  20. Klug H, Alexander L, editors. X-Ray diffraction procedures. New York: Wiley; 1962.

    Google Scholar 

  21. Gonzalez Henrıquez CM, Terraza CA, Tagle LH, Gonzalez AB, Volkmann UG, Cabrera AL, Ramos-Moore E, Retamal MJ. Inclusion effect of gold and copper particles in a poly(amide) matrix that contains a thiophene moiety and Si or Ge atoms in the main chain. J Mater Chem. 2012;22:6782–91.

    Article  Google Scholar 

  22. Kondo M, Shimamura M, Noro S, Minakoshi S, Asami A, Seki K, Kitagawa S. Microporous materials constructed from the interpenetrated coordination network structures and methane adsorption properties. Chem Mater. 2000;12:1288–99.

    Article  CAS  Google Scholar 

  23. Seki S, Takamizawa S, Mori W. Design and gas adsorption property of a three-dimensional coordination polymer with a stable and highly porous framework. Chem Lett. 2001;30:332–3.

    Article  Google Scholar 

  24. Rosi NL, Eckert J, Eddaoudi M, Vodak DT, Kim J, O’Keeffe M, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science. 2003;300:1127–9.

    Article  CAS  Google Scholar 

  25. Chen B, Eddaoudi M, Hyde ST, O’Keeffe M, Yaghi OM, Interwoven metal-organic framework on a periodic minimal surface with extra-large pores. Science. 2001;291:1021–3.

    Article  CAS  Google Scholar 

  26. Li H, Eddaoudi M, Groy TL, Yaghi OM. Establishing microporosity in open metal- organic frameworks: gas sorption isotherms for Zn(BDC) (BDC = 1,4-benzenedicarboxylate). J Am Chem Soc. 1998;120:8571–2.

    Article  CAS  Google Scholar 

  27. Feréy G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki IA. Chromium terephthalate-based solid with unusually large pore volumes and surface area. Science. 2005;309:2040–2.

    Article  Google Scholar 

  28. Chui SSY. F. Lo S M, Charmant J P H, Orpen A G, Williams I D, A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]. Science. 1999;283:1148–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks Prof. Jorge A. R. Navarro and his research group Carmen Montoro, Elsa Quartapelle, Sara Rojas and the Inorganic Chemistry Department, Granada University, Spain, for their cooperation. The author thanks also Dr. Mostafa A. Hussein, Chemistry Department, Faculty of Science, Port-Said University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser Mohammed Hosny.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosny, N.M. Solvothermal synthesis, thermal and adsorption properties of metal-organic frameworks Zn and CoZn(DPB). J Therm Anal Calorim 122, 89–95 (2015). https://doi.org/10.1007/s10973-015-4721-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4721-y

Keywords

Navigation