Skip to main content
Log in

Copper diffusion in cable-insulating materials by chemiluminescence and DSC techniques

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 13 February 2016

Abstract

Chemiluminescence (CL) and differential scanning calorimetry (DSC) were applied for proving the copper ion migration processes occurring within the low-density polyethylene (LDPE) electrical insulator as a consequence of intimate contact. Thin LDPE slides of 0.5 mm thick were subjected to short-time thermal stress at temperatures between 80 and 120 °C. Both CL and DSC kinetic parameters revealed the acceleration of post-treatment oxidation at elevated temperatures (170–200 °C) in copper-contacting polymer as in respect to the cases when Cu was absent. It was revealed that the oxidation rate measured by CL was more than two times higher for the samples heated in the presence of Cu than in its absence, while the oxidation induction time from DSC was considerably lowered for the same samples. Elemental analysis data provided by atomic absorption spectroscopy and particle-induced X-ray emission techniques as well as SEM investigations confirmed the presence of copper within the samples subjected to thermal treatment when the polymer insulation was in contact with the metallic conductor. Chemiluminescence procedure has a remarkable sensitivity to detect the effect of copper in the polymer matrix even at low concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Precopio F, Gilbert A. The invention of chemically crosslinked polyethylene. IEEE Electr Insul Mag. 1999;15(1):23–5.

    Article  Google Scholar 

  2. Tsujimoto TM, Nakade Yagi Y, Ishi N. Approach for wide use of diagnostic method for XLPE cables using harmonics in AC loss current. Electr Eng J. 2008;165(4):52–9.

    Article  Google Scholar 

  3. Hawkins WL, Chan MG, Link GL. Factors influencing the thermal oxidation of polyethylene. Polym Eng Sci. 1971;11(5):377–80.

    Article  CAS  Google Scholar 

  4. Ciuprina F, Teissèdre G, Fillipini JC, Smedberg A, Campus A, Hampton N. Chemical crosslinking of polyethylene and its effect on water tree initiation and propagation. IEEE Trans Dielectr Electr Insul. 2010;17(3):709–15.

    Article  CAS  Google Scholar 

  5. Ma Z, Huang X, Jiang P, Wang G. Effect of silane-grafting on water tree resistance of XLPE cable insulation. J Appl Polym Sci. 2010;115(5):168–75.

    Google Scholar 

  6. Densley RJ, Bartniltas R, Bernstein B. Multiple stress of solid-dielectric extruded dry cured insulation systems for power transmission cables. IEEE Trans Power Deliv. 1994;9(1):559–71.

    Article  CAS  Google Scholar 

  7. Sajkiewicz P, Philips PJ. Peroxide crosslinking of linear low density polyethylene with homogeneous distribution of short chain branching. J Polym Sci A Polym Chem. 1995;33(5):853–62.

    Article  CAS  Google Scholar 

  8. Panzer LM, Bisang W. Silane crosslinking of polyethylene for improving product quality and simplifying the production process. Int Polym Sci Technol. 1998;25(1):51–6.

    Google Scholar 

  9. Peacock AJ. Handbook of polyethylene, structures, structures, properties, and applications. New York: Marcel & Dekker; 2000.

    Google Scholar 

  10. Gehring J. Silane crosslinking of polyethylene for improving product quality and simplifying the production process. Radiat Phys Chem. 2000;57(1):361–5.

    Article  CAS  Google Scholar 

  11. Rojas de Gáscue B, Luis Prin J, Hernández G, Vallés EM, Lorenzo AT, Müller AJ. Use of the successive self-nucleation and annealing technique to characterize 60Co gamma irradiated HDPEs. J Therm Anal Calorim. 2011;103(2):669–78.

    Article  CAS  Google Scholar 

  12. Zaharescu T, Jipa S, Setnescu R, Setnescu T. Radiation processing of polyolefin blends. Part I Crosslinking of EPDM/PP blends. J Appl Polym Sci. 2000;77(5):982–7.

    Article  CAS  Google Scholar 

  13. Bracco P, Brunella V, Luda MP, Zanetti M, Costa L. Radiation-induced crosslinking of UHMWPE in the presence of co-agents: chemical and mechanical characterisation. Polymer. 2005;46(24):10648–57.

    Article  CAS  Google Scholar 

  14. Zaharescu T, Feraru E, Podină C. Thermal stability of gamma irradiated ethylene-propylene-diene monomer/divinyl benzene systems. Polym Degrad Stab. 2005;87(1):11–6.

    Article  CAS  Google Scholar 

  15. Azizi H, Morshedian J, Barikani M. Silane grafting and moisture crosslinking of polyethylene: the effect of molecular structure. J Vinyl Addit Technol. 2009;15(3):184–90.

    Article  CAS  Google Scholar 

  16. Crine JP, Haridoss S, Cole KC, Bulinski AT, Densley RJ, Bamji SS. IEEE International Symposium on Electrical Insulation, Boston MA, 5–8 June 1988. http://xplorebcpaz.ieee.org/stamp/stamp.jsp?tp=&arnumber=13909.

  17. Ciuprina F, Teissèdre G, Filippini G. Polyethylene crosslinking and water treeing. Polymer. 2001;42(18):7841–6.

    Article  CAS  Google Scholar 

  18. Densley RJ, Bamji SS, Bulinski AT, Crine J-P. IEEE International Symposium on Electrical Insulation, Toronto, Canada, 3–6 June 1990. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=00109735.

  19. Bulinski AT, Crine J-P, Noirhomme B, Densley RJ, Bamji SS. Polymer oxidation and water treeing. IEEE TDEI. 1998;5(4):558–70.

    CAS  Google Scholar 

  20. Elvira M, Tiemblo P, Gómez-Elvira JM. Changes in the crystalline phase during the thermo-oxidation of a metallocene isotactic polypropylene. Polym Degrad Stab. 2004;83(3):509–18.

    Article  CAS  Google Scholar 

  21. Sack S, Schär S, Steger E, Wagner H. Studies on the mechanism of the copper-catalyzed thermal oxidation of low-density polyethylene. Polym Degrad Stab. 1984;7(4):193–203.

    Article  CAS  Google Scholar 

  22. Gorghiu LM, Jipa S, Zaharescu T, Setnescu R, Mihalcea I. The effect of metals on thermal degradation of polyethylenes. Polym Degrad Stab. 2004;84(1):7–11.

    Article  CAS  Google Scholar 

  23. Ozawa Z. Role of metals and metal-deactivators in polymer degradation. Polym Degrad Stab. 1988;20(3–4):203–36.

    Article  Google Scholar 

  24. Chirinos-Padrón AJ, Hernandez PH, Chavez E, Allen NS, Vasiliou C, de Poortere M. Influences of unsaturation and metal impurities on the oxidative degradation of high density polyethylene. Eur Polym J. 1987;23(11):935–40.

    Article  Google Scholar 

  25. Zweifel H. Stabilization of polymeric materials. Berlin: Springer; 1988.

    Google Scholar 

  26. Chirinos-Padrón AJ, Hernández PH, Suárez FA. Influence of metal ions on antioxidant behaviour in polypropylene. Polym Degrad Stab. 1988;20(3–4):237–55.

    Article  Google Scholar 

  27. Jipa S, Gorghiu LM, Mihalcea I, Zaharescu T, Setnescu R, Setnescu T, Dumitru M. The catalytic effect of some metals in thermooxidation of polyethylene. Mater Plast. 2002;39:81–5.

    CAS  Google Scholar 

  28. Viebke J, Gedde UW. Assessment of lifetime of hot-water polyethylene pipes based on oxidation induction time data. Polym Eng Sci. 1998;38(8):1244–50.

    Article  CAS  Google Scholar 

  29. Jipa S, Constantinescu V, Setnescu R, Setnescu T. Apparatus for measuring the antioxidative stability of solid polymeric materials. RO Patent No. 110367; 1995.

  30. Jipa S, Zaharescu T, Setnescu R, Setnescu T, Brites MJS, Silva AMG, Marcelo-Curto MJ, Gigante B. Chemiluminescence study of thermal and photostability of polyethylene. Polym Int. 1999;48(5):414–20.

    Article  CAS  Google Scholar 

  31. Setnescu R, Jipa S, Osawa Z. Chemiluminescence study on the oxidation of several polyolefins—I. Thermal-induced degradation of additive-free polyolefins. Polym Degrad Stab. 1998;60(2–3):377–83.

    Article  CAS  Google Scholar 

  32. Ghaemy M, George G. Hydroperoxide formation and the effect of stabilisers on integrated chemiluminescence in the early stages of polypropylene photo-oxidation. Iran J Sci Technol. 1993;2(1):44–56.

    CAS  Google Scholar 

  33. Ilie S, Setnescu R, Lungulescu EM, Marinescu V, Ilie D, Setnescu T, Mares G. Investigation of a mechanically failed cable insulation used in indoor conditions. Polym Test. 2011;30(2):173–82.

    Article  CAS  Google Scholar 

  34. Stoica Guzun A, Stroescu A, Jinga SI, Voicu G, Grumezescu AM, Holban AM. Plackett-Burman experimental design for bacterial cellulose-silica composite synthesis. Mater Sci Eng C. 2014;42:280–8.

    Article  CAS  Google Scholar 

  35. Boukezzi L, Boubakeur A, Lallouani M. Effect of artificial thermal aging on the crystallinity of XLPE insulation cables: X-ray study. IEEE Conference electrical insulation and dielectric phenomena, Vancouver BC, Canada 14–17 Oct 2007 (IEEE CEIDP Conf R 2007, p. 65–68).

  36. Ziegler-Borowska M, Chełminiak D, Kaczmarek H. Thermal stability of magnetic nanoparticles coated by blends of modified chitosan and poly(quaternary ammonium) salt. J Therm Anal Calorim. 2015;119:499–506.

    Article  CAS  Google Scholar 

  37. Chaki SH, Tailor JP, Deshpande MP. Study of catalytic action of micro-particles and synthesized nanoparticles of CuS on cellulose pyrolysis. J Therm Anal Calorim. 2014;117(3):1137–44.

    Article  CAS  Google Scholar 

  38. Allara DL, White CW, Meek RL, Briggs TH. Mechanism of oxidation at a copper–polyethylene interface. II. Penetration of copper ions in the polyethylene matrix. J Polym Sci Polym Chem Ed. 1976;14(1):93–104.

    Article  CAS  Google Scholar 

  39. Fuentes M, et al. Main binding sites involved in Fe(III) and Cu(II) complexation in humic-based structures. J Geochem Expl. 2013;129:14–7.

    Article  CAS  Google Scholar 

  40. Kim KT, Lee YG, Kim SD. Combined toxicity of copper and phenol derivatives to Daphnia magna: effect of complexation reaction. Env Int. 2006;32(4):487–92.

    Article  CAS  Google Scholar 

  41. Astruc A, Bartolomeo P, Fayolle B, Audouin L, Verdu J. Accelerated oxidative ageing of polypropylene fibers in aqueous medium under high oxygen pressure as studied by thermal analysis. Polym Test. 2004;23(8):919–23.

    Article  CAS  Google Scholar 

  42. Calvert JG, Pitts JN. Photochemistry. London: Wiley; 1966.

    Google Scholar 

  43. Richaud E, Farcas F, Fayolle B, Audouin L, Verdu J. Hydroperoxide titration by DSC in thermally oxidized polypropylene. Polym Test. 2006;25(6):829–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the Romanian Ministry of National Education—Executive Unit for Financing Higher Education, Research, Development and Innovation (MEN-UEFISCDI), through the PN II 2013 Partnerships Programme, project 282/2014, “High performance polymeric insulations for electrical rotation machines. Technology and modeling approaches.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Radu Setnescu or Traian Zaharescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jipa, S., Setnescu, R., Zaharescu, T. et al. Copper diffusion in cable-insulating materials by chemiluminescence and DSC techniques. J Therm Anal Calorim 122, 251–259 (2015). https://doi.org/10.1007/s10973-015-4668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4668-z

Keywords

Navigation