Skip to main content
Log in

Simultaneous thermogravimetric and mass spectrometric monitoring of the pyrolysis, gasification and combustion of rice straw

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Energy valorization of rice straw is possible by thermal conversion. The aim of this paper was to study the emissions throughout heating of rice straw under seven different atmospheres (simulating combustion, gasification and pyrolysis). For this purpose, combustion, gasification and pyrolysis of rice straw were studied by simultaneous TG/MS dynamic runs at 15 °C min−1. Results showed that a partially inert atmosphere is more advisable from an environmental point of view due to the lower emission of contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Food and Agriculture Organization of the United Nations (FAO). Seguimiento del Mercado del Arroz de la FAO (SMA). 2014. http://www.fao.org/economic/est/publicaciones/publicaciones-sobre-el-arroz/seguimiento-del-mercado-del-arroz-sma/es/. Accessed 15 July 2014.

  2. Calvo LF, Otero M, Jenkins BM, Morán A, García AI. Heating process characteristics and kinetics of rice straw in different atmospheres. Fuel Process Technol. 2004;85:279–91.

    Article  CAS  Google Scholar 

  3. Chen X, Yu J, Zhang Z, Lu C. Study on structure and thermal stability properties of cellulose fibers from rice straw. Carbohydr Polymer Rev. 2011;85:245–50.

    Article  CAS  Google Scholar 

  4. Shukry N, Ishak F, Sefain Z. DTA study of thermal degradation of bagasse and rice straw hemicelluloses. J Therm Anal Calorim. 2005;37:915–26.

    Article  Google Scholar 

  5. Kim Oanh NT, Ly BT, Tipayarom D, Manandhar BR, Prapat P, Simpson CD, Sally Liu L. Characterization of particulate matter emission from open burning of rice straw. Atmos Environ. 2011;45:493–502.

    Article  Google Scholar 

  6. Gadde B, Menke C, Wassmann R. Rice straw as a renewable energy source in India, Thailand, and the Philippines: overall potential and limitations for energy contribution and greenhouse gas mitigation. Biomass Bioenergy. 2009;33:1532–46.

    Article  CAS  Google Scholar 

  7. Ponnamperuma FN. Effects of Flooding on Soils. In: Kozlowski TT, editor. Flooding and plant growth. San Diego: Academic Press; 1984. p. 9–45.

    Chapter  Google Scholar 

  8. Roca-Pérez L, Martí-nez C, Marcilla P, Boluda R. Composting rice straw with sewage sludge and compost effects on the soil-plant system. Chemosphere. 2009;75:781–7.

    Article  Google Scholar 

  9. Inoko A. The composting of organic materials and associated maturity problems. ASPAC. 1982.

  10. Rodríguez A, Moral A, Serrano L, Labidi J, Jiménez L. Rice straw pulp obtained by using various methods. Bioresour Technol. 2008;99:2881–6.

    Article  Google Scholar 

  11. Champagne ET. Rice: chemistry and technology. St. Paul: American Association of Cereal Chemists; 2004.

    Book  Google Scholar 

  12. Shinozaki Y, Kitamoto HK. Ethanol production from ensiled rice straw and whole-crop silage by the simultaneous enzymatic saccharification and fermentation process. J Biosci Bioeng. 2011;111:320–5.

    Article  CAS  Google Scholar 

  13. Jin S, Chen H. Fractionation of fibrous fraction from steam-exploded rice straw. Process Biochem. 2007;42:188–92.

    Article  CAS  Google Scholar 

  14. Sarkar P, Sahu SG, Chakraborty N, Adak AK. Studies on potential utilization of rice husk char in blend with lignite for cocombustion application. J Therm Anal Calorim. 2014;115:1573–81.

    Article  CAS  Google Scholar 

  15. Genieva S, Turmanova S, Dimitrov A, Petkov P, Vlaev L. Thermal degradation of rice husks on a pilot plant: utilization of the products as adsorbents for oil spill cleanup. J Therm Anal Calorim. 2012;110:111–8.

    Article  CAS  Google Scholar 

  16. Moliner C, Bosio B, Arato E, Ribes A. Comparative study for the energy valorisation of rice straw. Chem Eng Trans. 2014;37:241–6.

    Google Scholar 

  17. Mishra G, Bhaskar T. Non isothermal model free kinetics for pyrolysis of rice straw. Bioresour Technol. 2014;169:614–21.

    Article  CAS  Google Scholar 

  18. Wu Q, Yao F, Xu X, Mei C, Zhou D. Thermal degradation of rice straw fibers: global kinetic modeling with isothermal thermogravimetric analysis. J Ind Eng Chem. 2013;19:670–6.

    Article  CAS  Google Scholar 

  19. Xie Z, Ma X. The thermal behaviour of the co-combustion between paper sludge and rice straw. Bioresour Technol. 2013;146:611–8.

    Article  CAS  Google Scholar 

  20. Calvo LF, Gil MV, Otero M, Morán A, Garcí-a AI. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems. Bioresour Technol. 2012;109:206–14.

    Article  CAS  Google Scholar 

  21. Zhaoshenq Y, Xiaoqian M, Ao L. Kinetic studies on catalytic combustion of rice and wheat straw under air- and oxygen-enriched atmospheres, by using thermogravimetric analysis. Biomass Bioenergy. 2008;32:1046–55.

    Article  Google Scholar 

  22. Arenillas A, Rubiera F, Pis JJ. Simultaneous thermogravimetry: mass spectrometric study on the pyrolysis behaviour of different rank coals. J Anal Appl Pyrol. 1999;50:31–46.

    Article  CAS  Google Scholar 

  23. Hatton PJ, Southward BWL. Optimisation of the connection between TA-MS systems together with improved data interpretation for TA-MS applications. J Therm Anal Calorim. 2003;72:83–92.

    Article  CAS  Google Scholar 

  24. Werther J, Ogada T. Sewage sludge combustion. Prog Energy Combust Sci. 1999;25:55–116.

    Article  CAS  Google Scholar 

  25. Ebeling JM, Jenkins BM. Thermogravimetric analysis and kinetic reaction rates for rice hulls and rice straw. American Society of Agricultural Engineers Paper No. 87–6028, ASAE, St. Joseph; 1987.

  26. Lipska-Quinn A, Zeronian SH, McGee KM. Thermal degradation of rice straw and its components. In: Overend RP, Milne TA, Mudge LK, ediors. Netherlands: Springer; 1985. pp. 453–471.

  27. Lu YJ, Guo LJ, Ji CM, Zhang XM, Hao XH, Yan QH. Hydrogen production by biomass gasification in supercritical water: a parametric study. Int J Hydrogen Energy. 2006;31:822–31.

    Article  CAS  Google Scholar 

  28. Thy P, Jenkins BM, Lesher CE, Grundvig S. Compositional constraints on slag formation and potassium volatilization from rice straw blended wood fuel. Fuel Process Technol. 2006;87:383–408.

    Article  CAS  Google Scholar 

  29. Hy P, Jenkins BM, Williams RB, Lesher CB, Bakker RR. Bed agglomeration in fluidized combustor fueled by wood and rice straw blends. Fuel Process Technol. 2010;91:464–1485.

    Google Scholar 

  30. Bakker RR, Jenkins BM. Feasibility of collecting naturally leached rice straw for thermal conversion. Biomass Bioenergy. 2003;25:597–614.

    Article  Google Scholar 

  31. Jenkins BM, Bakker RR, Wei JB. On the properties of washed straw. Biomass Bioenergy. 1996;10:177–200.

    Article  CAS  Google Scholar 

  32. Jenkins BM, Bakker RR, Baxter LL, Gilmer JH, Wei JB. Combustion characteristics of leached biomass. In: Bridgwater AV, Boocock DBG, editors. Netherlands: Springer; 1997. pp. 1316–1330.

  33. Theis M, Skrifvars B, Zevenhoven M, Hupa M, Tran H. Fouling tendency of ash resulting from burning mixtures of biofuels. Part 2: deposit chemistry. Fuel. 2006;85:1992–2001.

    Article  CAS  Google Scholar 

  34. Naik S, Goud VV, Rout PK, Jacobson K, Dalai AK. Characterization of Canadian biomass for alternative renewable biofuel. Renew Energy. 2010;35:1624–31.

    Article  CAS  Google Scholar 

  35. Werther J, Saenger M, Hartge E, Ogada T, Siagi Z. Combustion of agricultural residues. Prog Energy Combust Sci. 2000;26:1–27.

    Article  CAS  Google Scholar 

  36. Kadam KL, Forrest LH, Jacobson WA. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy. 2000;18:369–89.

    Article  CAS  Google Scholar 

  37. Irfan M, Riaz M, Arif MS, Shahzad SM, Saleem F, Rahman N, Van DB, Abbas F. Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan. Atmos Environ. 2014;84:189–97.

    Article  CAS  Google Scholar 

  38. Badr O, Probert SD. Oxides of nitrogen in the Earth’s atmosphere: trends, sources, sinks and environmental impacts. Appl Energy. 1993;46:1–67.

    Article  CAS  Google Scholar 

  39. Gajewski A, Siergiejuk J, Szulborski K. Carbon dioxide emission while heating in selected European countries. Energy Build. 2013;65:197–204.

    Article  Google Scholar 

  40. Chang SJ. Solving the problem of carbon dioxide emissions, forest policy and economics. New Front For Econ. 2013;35:92–7.

    CAS  Google Scholar 

  41. Ren Q. NOx and N2O precursors from co-pyrolysis of biomass and sludge. J Therm Anal Calorim. 2013;112:997–1002.

    Article  CAS  Google Scholar 

  42. Wu L, Zeng W. Research on the contribution of structure adjustment on SO2 emissions reduction-case study Shijingshan District, Beijing -, Procedia Environmental Sciences; 2013 International Symposium on Environmental Science and Technology (2013 ISEST). 2013;18:849–855.

  43. Gimeno L, Marín E, del Teso T, Bourhim S. How effective has been the reduction of SO2 emissions on the effect of acid rain on ecosystems? Sci Total Environ. 2001;275:63–70.

    Article  CAS  Google Scholar 

  44. Nimmo W, Patsias AA, Hampartsoumian E, Gibbs BM, Williams PT. Simultaneous reduction of NOx and SO2 emissions from coal combustion by calcium magnesium acetate. Fuel. 2004;83:149–55.

    Article  CAS  Google Scholar 

  45. Pei-dong Z, Guomei J, Gang W. Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renew Sustain Energy Rev. 2007;11:1903–12.

    Article  Google Scholar 

  46. Velders GJM, Snijder A, Hoogerbrugge R. Recent decreases in observed atmospheric concentrations of SO2 in the Netherlands in line with emission reductions. Atmos Environ. 2011;45:5647–51.

    Article  CAS  Google Scholar 

  47. Liu Q, Wang Q. Pathways to SO2 emissions reduction in China for 1995–2010: based on decomposition analysis. Environ Sci Policy. 2013;33:405–15.

    Article  Google Scholar 

  48. Suchara I, Sucharová J, Holá M. The influence of contrasting ambient SO2 concentrations in the Czech Republic in 1995 and in 2010 on the characteristics of spruce bark, used as an air quality indicator. Ecol Ind. 2014;39:144–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sergio Paniagua Bermejo is grateful for the support of the University of Leon for his doctoral grant and Carla Escapa the Spanish Ministry of Educations, Culture and Sports (FPU12/03073). Also, Marta Otero acknowledges support from the Spanish Ministry of Economy and Competitiveness (RYC-2010-05634).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Paniagua.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paniagua, S., Otero, M., Coimbra, R.N. et al. Simultaneous thermogravimetric and mass spectrometric monitoring of the pyrolysis, gasification and combustion of rice straw. J Therm Anal Calorim 121, 603–611 (2015). https://doi.org/10.1007/s10973-015-4632-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4632-y

Keywords

Navigation