Skip to main content
Log in

Effect of the density of nitric acid on thermal behavior during sulfamate nitration

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Ammonium dinitramide (ADN) has attracted significant interest as a potential oxidizer for next-generation rocket propellants, since it is a halogen-free alternative to the widely used oxidizer ammonium perchlorate. Because ADN synthesis requires N-nitration generates a very unstable intermediate to form the N–(NO2)2 group, this study used a reaction calorimeter to assess the heat of decomposition during the nitration of potassium sulfamate with various nitration agents (HNO3/H2SO4 and HNO3) by using the HNO3 density between 1.52 and 1.38 gcm−3. The heat of decomposition of potassium sulfamate in HNO3 was found to decrease with decreasing HNO3 density. In contrast, the heat of decomposition did not decrease with density in HNO3/H2SO4, since a significant temperature rise was generated when combining the lower density HNO3 with H2SO4. The heat of decomposition in high-density HNO3 (1.52 gcm−3) was greater than that in the mixed acid, likely because protonation of the potassium sulfate nitrogen by H2SO4 inhibited the subsequent nitration step.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4

Similar content being viewed by others

References

  1. Bottaro JC. Recent advances in explosives and solid propellants. Chem Ind. 1996;7:249–52.

    Google Scholar 

  2. Jones DEG, Kwok QSM, Vachon M, Badeen C, Ridley W. Characterization of ADN and ADN-based propellants. Propellants Explos Pyrotech. 2005;30:140–7.

    Article  CAS  Google Scholar 

  3. Östmark H, Bemm U, Langlet A, Sandén R, Wingborg N. The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energy Mater. 2000;18:123–38.

    Article  Google Scholar 

  4. Matsunaga H, Habu H, Miyake A. Influences of aging on thermal decomposition mechanism of high performance oxidizer ammonium dinitramide. J Therm Anal Calorim. 2013;113:1387–94.

    Article  CAS  Google Scholar 

  5. Schmitt RJ, Bottaro JC, Penwell PE, Bomberger C. Process for forming ammonium dinitramide salt by reaction between ammonia and a nitronium-containing compound. US patent 5,316,749. 1994.

  6. Matsunaga H, Habu H, Miyake A. Thermal decomposition of the high-performance oxidizer ammonium dinitramide under pressure. J Therm Anal Calorim. 2014;116:1227–32.

    Article  CAS  Google Scholar 

  7. Langlet A, Östmark H, Wingborg N. Method of preparing dinitramidic acid and salts thereof. US patent 5,976,483. 1999.

  8. Hatano H, Onda T, Shiino K, Miyazaki S, Matsuura S. New synthetic method and properties of ammonium dinitramide. Sci Technol Energy Mater. 1996;57:160–5.

    CAS  Google Scholar 

  9. Suzuki S, Miyazaki S, Hatano H, Shiino K, Onda T. Synthetic method for forming ammonium dinitramide (ADN). US patent 5,659,080. 1997.

  10. Bottaro JC, Penwell PE, Schmitt RJ. A new synthesis of alkyl-N, N-dinitramines by direct nitration of isocyanates. Synth Commun. 1991;21:945–9.

    Article  CAS  Google Scholar 

  11. Yang R, Thakre P, Yang V. Thermal decomposition and combustion of ammonium dinitramide. Combust Explos Shock Waves. 2005;41:657–79.

    Article  Google Scholar 

  12. Löbbecke S, Krause HH, Pfeil A. Thermal analysis of ammonium dinitramide decomposition. Propellants Explos Pyrotech. 1997;22:184–8.

    Article  Google Scholar 

  13. Pavlov AN, Grebennikov VN, Nazina LD, Nazin GM, Manelis GB. Thermal decomposition of ammonium dinitramide and mechanism of anomalous decay of dinitramide salts. Russ Chem Bull. 1999;48:50–4.

    Article  CAS  Google Scholar 

  14. Alavia S, Thompson DL. Decomposition pathways of dinitramic acid and the dinitramide ion. J Phys Chem. 2003;119:232–40.

    Article  Google Scholar 

  15. Iwata Y. Evaluation of thermal decomposition hazards by differential adiabatic calorimeter. Sci Technol Energy Mater. 2013;64:160–16574.

    Google Scholar 

  16. Okada K, Funakoshi A, Akiyoshi M, Usuba S, Matsunaga T. Thermal hazard evaluation of ammonium nitrate emulsions by DSC and 1.5 L pressure vessel test. Sci Technol Energy Mater. 2014;75:1–7.

    CAS  Google Scholar 

  17. Tanaka K, Kumasaki M, Miyake A. Influence of Mg surface layer for induction period of Grignard reagent formation. J Therm Anal Calorim. 2013;113:1395–401.

    Article  CAS  Google Scholar 

  18. Sugie Y, Miyake A. Effects of temperature on nitration of sulfamates. J Therm Anal Calorim. 2014;116:1213–7.

    Article  CAS  Google Scholar 

  19. Cupery M. Sulfamic acid: a new industrial chemical. Ind Eng Chem. 1938;30:627–31.

    Article  CAS  Google Scholar 

  20. Garret M, Tao T, Jolly WL. The protonation and deprotonation of sulfamide and sulfamate in aqueous solutions. J Phys Chem. 1964;68:824–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Sugie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugie, Y., Miyake, A. Effect of the density of nitric acid on thermal behavior during sulfamate nitration. J Therm Anal Calorim 121, 275–279 (2015). https://doi.org/10.1007/s10973-015-4564-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4564-6

Keywords

Navigation