Skip to main content
Log in

Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

An Erratum to this article was published on 04 June 2015

Abstract

Various compositions of polypropylene (PP) and poly(lactic acid) (PLA) blends were prepared by one-step melt compounding in a twin-screw extruder. Two compositions were selected for investigation of effect of clay and n-butyl acrylate glycidyl methacrylate ethylene terpolymer (PTW) as compatibilizer on thermal properties and non-isothermal crystallization behavior of PP/PLA/clay nanocomposite systems, i.e., PP-rich one (75/25 composition) containing Cloisite 15A and PLA-rich one (25/75 composition) containing Cloisite 30B. The thermal behavior of the systems was investigated by means of differential scanning calorimetry (DSC) and correlated with their microstructures. The narrowing down of the peaks in the wide-angle X-ray scattering pattern of PP-rich blend was associated with an increase in size and/or perfection of the crystals. On the other hand, the broadening of the peaks in PLA-rich blend implied a decrease in the size of the crystals. The calculated interlayer distance, using Scherrer equation, in Cloisite 15A was slightly greater than that of Cloisite 30B. Moreover, an increase of 100 % in interlayer distance showed a greater level of intercalation in PP-rich system as compared to the PLA-rich system. Blending of PP and PLA led to significant changes in the crystallinity behavior of the blends compared to the neat components. Moreover, the incorporation of the both clays into the two systems led to a greater change in the crystallinity degree, comparing to that of unfilled blends.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim K-W, Lee B-H, Kim H-J, Sriroth K, Dorgan JR. Thermal and mechanical properties of cassava and pineapple flours-filled PLA bio-composites. J Therm Anal Calorim. 2012;108(3):1131–9.

    Article  CAS  Google Scholar 

  2. Shi N, Dou Q. Non-isothermal cold crystallization kinetics of poly(lactic acid)/poly(butylene adipate-co-terephthalate)/treated calcium carbonate composites. J Therm Anal Calorim. 2014;. doi:10.1007/s10973-014-4162-z.

    Google Scholar 

  3. Tábi T, Suplicz A, Czigány T, Kovács JG. Thermal and mechanical analysis of injection moulded poly(lactic acid) filled with poly(ethylene glycol) and talc. J Therm Anal Calorim. 2014;118:1419–30.

    Article  Google Scholar 

  4. Parry RT. Principle and applications of modified atmosphere packaging of food. New York: Chapman & Hall; 1993.

    Book  Google Scholar 

  5. Vieth WR. Diffusion in and through polymers: principles and applications, Chapter 4. New York: Oxford University Press; 1991.

    Google Scholar 

  6. Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835–64.

    Article  CAS  Google Scholar 

  7. Sarasua JR, Arraiza AL, Balerdi P, Maiza I. Crystallinity and mechanical properties of optically pure polylactides and their blends. Polym Eng Sci. 2005;45:745–53.

    Article  CAS  Google Scholar 

  8. Tsuji H, Ikada Y. Crystallization from the melt of PLA with different optical purities and their blends. Macromol Chem Phys. 1996;197:3483–99.

    Article  CAS  Google Scholar 

  9. Hutchinson M, Dorgan J, Knauss D, Hait S. Optical properties of polylactides. J Polym Environ. 2006;14:119–24.

    Article  CAS  Google Scholar 

  10. Pyda M, Bopp RC, Wunderlich B. Heat capacity of poly(lactic acid). J Chem Thermodynam. 2004;36:731–42.

    Article  CAS  Google Scholar 

  11. Dorgan JR, Jansen J, Clayton MP. Melt rheology of variable l-content poly(lactic acid). J Rheol. 2005;49:607–19.

    Article  CAS  Google Scholar 

  12. Liang J-Z, Zhou L, Tang C-Y, Tsui C-P. Crystalline properties of poly(l-lactic acid) composites filled with nanometer calcium carbonate. Compos B-Eng. 2013;45:1646–50.

    Article  CAS  Google Scholar 

  13. Zhao H, Cui Z, Wang X, Turng L-S, Peng X. Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate (PLA/PHBV) blends and PLA/PHBV/clay nanocomposites. Compos B-Eng. 2013;51:79–91.

    Article  CAS  Google Scholar 

  14. As’habi L, Jafari S H, Khonakdar H A, Häussler L, Wagenknecht U, Heinrich G, Non-isothermal crystallization behavior of PLA/LLDPE/nanoclay hybrid: Synergistic role of LLDPE and clay, Thermochim Acta. 2013;565:102–13.

  15. Tábi T, Sajó IE, Szaból F, Luyt AS, Kovács JG. Crystalline structure of annealed polylactic acid and its relation to processing, eXP. Polym Let. 2010;4(10):659–68.

    Article  Google Scholar 

  16. Chow WS, Lok SK. Thermal properties of poly(lactic acid)/organo-montmorillonite nanocomposites. J Therm Anal Calorim. 2009;95(2):627–32.

    Article  CAS  Google Scholar 

  17. Tsuji H, Tezuka Y. Stereocomplex formation between enantiomeric poly(lactic acid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid)s from the melt, Biomacromol. 2004;5:1181–6.

  18. Rodrigues JAFR, Parra DF, Lugáo AB. Crystallization on films of PHB/PEG blends. J Therm Anal Calorim. 2005;79:379–81.

    Article  CAS  Google Scholar 

  19. Ebadi-Dehaghani H, Barikani M, Khonakdar HA, Jafari SH, Wagenknecht U, Heinrich G. An investigation on compatibilization threshold in the interface of PP/PLA blends using rheological studies. J Vin Add Tech. 2014;. doi:10.1002/vnl.21424.

    Google Scholar 

  20. Bai F, Li F, Calhoun B, Quirk RP, Cheng SZD. Polymer Handbook. 4th ed. New York: John Wiley & Sons Inc.; 1999.

    Google Scholar 

  21. Brandrup J, Immergut EH. Polymer Hand Book. New York: Wiley; 1975.

    Google Scholar 

  22. Battegazzore D, Bocchini S, Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. eXP Polym Let. 2011;5:849–58.

  23. Labour T, Vigier G, Séguéla R, Gauthier C, Orange G, Bomal Y. Influence of the β-crystalline phase on the mechanical properties of unfilled and calcium carbonate-filled polypropylene: Ductile cracking and impact behavior. J Polym. Sci Part B-Polym Phys. 2002;40:31–42.

    Article  CAS  Google Scholar 

  24. Qian J, Cheng G, Zhang H, Liu YX. Preparation and characterization of polypropylene/silica nanocomposites by gamma irradiation via ultrafine blend J Polym Res. 2011;18:409–17.

    CAS  Google Scholar 

  25. Scherrer P. Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. 1918;2:98.

    Google Scholar 

  26. Bertoluzza A, Fagnano C. Morelli MA, Gotfardi V, Guglielmi M. Raman and Infra-Red spectra on silica gel evolving towards glass, J Non-Crystal Sol. 1982;48:1–17.

    Google Scholar 

  27. Ramez A, Occurrence M. Mineralogy of a deposit of Shampoo-clay in southern Iran. Appl Clay Sci. 1996;11:43–5.

    Article  Google Scholar 

  28. Bahari A, Morgen P, Li ZS. Ultra-thin silicon nitride films on Si 100 studied with core level photoemission. Surf Sci. 2008;602:2315–24.

    Article  CAS  Google Scholar 

  29. Hernandez-Torres J, Mendoza-Galvan A. Formation of NiO–SiO2 nanocomposite thin films by the sol–gel method. J. Nan crystalline solids. 2005;351:2029–35.

    Article  CAS  Google Scholar 

  30. Fortunati E, Armentano I, Zhou Q, Puglia D, Terenzi A, Berglund LA, Kenny JM. Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Deg Stab. 2012;97:2027–36.

    Article  CAS  Google Scholar 

  31. Lee SJ, Hahm WG, Kikutani T, Kim BC. Effects of clay and POSS nanoparticles on the quiescent and shear-induced crystallization behavior of high molecular weight poly(ethylene terephthalate). Polym Eng Sci. 2009;49:317–23.

    Article  CAS  Google Scholar 

  32. Wan W, Yu D, Xie Y, Guo X, Zhou W, Cao J. Effects of nanoparticle treatment on the crystallization behavior and mechanical properties of polypropylene/calcium carbonate nanocomposites. J Appl Polym Sci. 2006;102:3480–8.

    Article  CAS  Google Scholar 

  33. Lin ZD, Huang ZZ, Zhang Y, Mai KC, Zeng HM. Crystallization and melting behavior of nano-CaCO3/polypropylene composites modified by acrylic acid. J Appl Polym Sci. 2004;91:2443–53.

    Article  CAS  Google Scholar 

  34. Yang Z, Mai K. Nonisothermal crystallization and melting behavior of β-nucleated isotactic polypropylene and polyamide 66 blends. J Appl Polym Sci. 2011;119:3566–73.

    Article  CAS  Google Scholar 

  35. Martin O, Avérous L. Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer. 2001;42:6209–19.

    Article  CAS  Google Scholar 

  36. Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005;41:569–75.

    Article  Google Scholar 

  37. Yew G H, Mohd Yusof A M, Mohd Ishak Z A, Ishiaku U S. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites, Polym Deg Stab. 2005;90:488-500.

  38. Scheirs J. Compositional and Failure Analysis of Polymers: A Practical Approach. New York: John Wiley and Sons; 2000. p. 1.

    Google Scholar 

  39. Arnal ML, Matos ME, Morales RA, Santana OO, Müller AJ. Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix. Macromol Chem Phys. 1998;199:2275–88.

    Article  CAS  Google Scholar 

  40. Ebadi-Dehaghani H, Khonakdar HA, Barikani M, Jafari SH. Experimental and theoretical analyses of mechanical properties of PP/PLA/clay nanocomposites. Compos- Part B. 2015;69:133–44.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a grant from the Iran Polymer and Petrochemical Institute (IPPI). The authors gratefully acknowledge the Research Vice Chancellor of IPPI and his co-workers for their helps and assistances.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ali Khonakdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebadi-Dehaghani, H., Barikani, M., Khonakdar, H.A. et al. Microstructure and non-isothermal crystallization behavior of PP/PLA/clay hybrid nanocomposites. J Therm Anal Calorim 121, 1321–1332 (2015). https://doi.org/10.1007/s10973-015-4554-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4554-8

Keywords

Navigation