Skip to main content
Log in

Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a new method for fitting the conversion rate curves of the distributed activation energy model (DAEM) and lignocellulosic biomass pyrolysis process was introduced. The method was based on the curve fitting technique using the Fraser–Suzuki function. Various simulated DAEM processes were analyzed. The results showed that the conversion rate curve of one DAEM process could be described well by a Fraser–Suzuki function. According to the obtained parameters of the fitted Fraser–Suzuki functions, the influences of the DAEM parameters on the conversion rate curves of the corresponding DAEM processes can be quantitatively obtained. The experimental data of the pyrolysis of cotton stalk, oilseed rape straw, and rice straw were fitted by the Fraser–Suzuki mixture model which involves three individual Fraser–Suzuki functions. It has been found that the Fraser–Suzuki mixture model can reproduce accurately the conversion rate curves of the pyrolysis of three lignocellulosic biomass samples. The Fraser–Suzuki mixture model provides an approach to separate lignocellulosic biomass pyrolysis into three parallel reactions which link to the decomposition of hemicellulose, cellulose, and lignin, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. White JE, Catallo WJ, Legendre BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolsis. 2011;91(1):1–33.

    Article  CAS  Google Scholar 

  2. Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy. 2010;35(1):232–42.

    Article  Google Scholar 

  3. Barbadillo F, Fuentes A, Naya S, Cao R, Mier JL, Artiaga R. Evaluating the logistic mixture model on real and simulated TG curves. J Therm Anal Calorim. 2007;87(1):223–7.

    Article  CAS  Google Scholar 

  4. Cao R, Naya S, Artiaga R, García A, Varela A. Logistic approach to polymer degradation in dynamic TGA. Polym Degrad Stab. 2004;85(1):667–74.

    Article  CAS  Google Scholar 

  5. Naya S, Cao R, de Ullibarri IL, Artiaga R, Barbadillo F, García A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J Chemom. 2006;20(3–4):158–63.

    Article  CAS  Google Scholar 

  6. Cai J, Alimujiang S. Kinetic analysis of wheat straw oxidative pyrolysis using thermogravimetric analysis: statistical description and isoconversional kinetic analysis. Ind Eng Chem Res. 2009;48(2):619–24.

    Article  CAS  Google Scholar 

  7. Cai J, Chen SY, Liu RH. Weibull mixture model for isoconversional kinetic analysis of biomass oxidative pyrolysis. J Energy Inst. 2009;82(4):238–41.

    Article  CAS  Google Scholar 

  8. Cai J, Liu R. Weibull mixture model for modeling nonisothermal kinetics of thermally stimulated solid-state reactions: application to simulated and real kinetic conversion data. J Phys Chem B. 2007;111(36):10681–6.

    Article  CAS  Google Scholar 

  9. Cai J, Liu R. Application of Weibull 2-mixture model to describe biomass pyrolysis kinetics. Energy Fuels. 2008;22(1):675–8.

    Article  CAS  Google Scholar 

  10. Kuo-Chao L, Keng-Tung W, Chien-Song C, Wei-The T. A new study on combustion behavior of pine sawdust characterized by the Weibull distribution. Chin J Chem Eng. 2009;17(5):860–8.

    Article  Google Scholar 

  11. Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118(15):8059–70.

    Article  CAS  Google Scholar 

  12. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91.

    Article  Google Scholar 

  13. Findoráková L, Svoboda R. Kinetic analysis of the thermal decomposition of Zn (II) 2-chlorobenzoate complex with caffeine. Thermochim Acta. 2012;543:113–7.

    Article  Google Scholar 

  14. Svoboda R, Málek J. Applicability of Fraser-Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56.

    Article  CAS  Google Scholar 

  15. Koga N, Goshi Y, Yamada S, Pérez-Maqueda L. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.

    Article  CAS  Google Scholar 

  16. Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74.

    Article  CAS  Google Scholar 

  17. Wu W, Cai J, Liu R. Isoconversional kinetic analysis of distributed activation energy model processes for pyrolysis of solid fuels. Ind Eng Chem Res. 2013;52(40):14376–83.

    Article  CAS  Google Scholar 

  18. Gb Várhegyi, Bz Bobály. Jakab E, Chen H. Thermogravimetric study of biomass pyrolysis kinetics. A distributed activation energy model with prediction tests. Energy Fuels. 2010;25(1):24–32.

    Google Scholar 

  19. Sonobe T, Worasuwannarak N. Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel. 2008;87(3):414–21.

    Article  CAS  Google Scholar 

  20. NREL. Determination of structural carbohydrates and lignin in biomass. Colorado, USA: National Renewable Energy Laboratory; 2011.

    Google Scholar 

  21. ASTM. Standard practice for preparation of biomass for compositional analysis. Pennsylvania, USA: ASTM International; 2007.

    Google Scholar 

  22. Fraser R, Suzuki E. Resolution of overlapping absorption bands by least squares procedures. Anal Chem. 1966;38(12):1770–3.

    Article  CAS  Google Scholar 

  23. Fraser RD, Suzuki E. Resolution of overlapping bands. Functions for simulating band shapes. Anal Chem. 1969;41(1):37–9.

    Article  CAS  Google Scholar 

  24. Felinger A. Data analysis and signal processing in chromatography. Amsterdam: Elsevier Science; 1998.

    Google Scholar 

  25. Scheeren P, Barna P, Smit H. A software package for the evaluation of peak parameters in an analytical signal based on a non-linear regression method. Anal Chim Acta. 1985;167:65–80.

    Article  CAS  Google Scholar 

  26. Brenner JR. Data analysis made easy with datafit. Chem Eng Educ. 2006;40(1):60–5.

    Google Scholar 

  27. Cai J, Liu R. New distributed activation energy model: numerical solution and application to pyrolysis kinetics of some types of biomass. Bioresour Technol. 2008;99(8):2795–9.

    Article  CAS  Google Scholar 

  28. Burnham AK, Braun RL. Global kinetic analysis of complex materials. Energy Fuels. 1999;13(1):1–22.

    Article  CAS  Google Scholar 

  29. Cai J, Wu W, Liu R. An overview of distributed activation energy model and its application in the pyrolysis of lignocellulosic biomass. Renew Sustain Energy Rev. 2014;36:236–46.

    Article  CAS  Google Scholar 

  30. Glynn J, Gray TW. The Beginner’s Guide to Mathematica, Version 4. Cambridge: Cambridge University Press; 2000.

    Google Scholar 

  31. Güneş M, Güneş S. The influences of various parameters on the numerical solution of nonisothermal DAEM equation. Thermochim Acta. 1999;336(1–2):93–6.

    Google Scholar 

  32. Cai J, He F, Yao F. Nonisothermal nth-order DAEM equation and its parametric study—use in the kinetic analysis of biomass pyrolysis. J Math Chem. 2007;42(4):949–56.

    Article  CAS  Google Scholar 

  33. Wu W, Mei Y, Zhang L, Liu R, Cai J. Effective activation energies of lignocellulosic biomass pyrolysis. Energy Fuels. 2014;28(6):3916–23.

    Article  CAS  Google Scholar 

  34. Orfao JJM, Antunes FJA, Figueiredo JL. Pyrolysis kinetics of lignocellulosic materials—three independent reactions model. Fuel. 1999;78(3):349–58.

    Article  CAS  Google Scholar 

  35. Manyà JJ, Velo E, Puigjaner L. Kinetics of biomass pyrolysis: a reformulated three-parallel-reactions model. Ind Eng Chem Res. 2003;42(3):434–41.

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was obtained from School of Agriculture and Biology, Shanghai Jiao Tong University (Grant No. NRC201101). The authors would like to acknowledge Professor Lius A. Pérez-Maqueda for his help in the parameter estimation of the Fraser–Suzuki function and Miss Lu Wang for providing TG data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmeng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Wu, W., Ji, P. et al. Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J Therm Anal Calorim 119, 1429–1438 (2015). https://doi.org/10.1007/s10973-014-4215-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-4215-3

Keywords

Navigation