Skip to main content
Log in

Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A tool for quick screening co-crystal formation between indomethacin (IMC) and saccharin (SAC) was attempted using DSC analytical technique or DSC–FTIR microspectroscopy as an accelerated method. The solid-state characterizations of IMC, SAC, and their physical, 30-min ground, or solvent-evaporated mixture, were, respectively, investigated. The DSC data evidences that two endothermic peaks at 154 and 184 °C but one exothermic peak at 158 °C were observed in the DSC curve of the physical mixture of IMC–SAC. The former appeared at 154 °C might be due to the fusion of eutectic mixture, but the latter at 184 °C was corresponded to the melting point of IMC–SAC co-crystal following the exothermic peak at 158 °C. The exothermic peak at 158 °C was due to the induction of molecular interaction of IMC and SAC, leading to IMC–SAC co-crystal formation. This indicates that DSC analytical technique could directly detect the thermal changes of the physical mixture of IMC–SAC to form an IMC–SAC co-crystal. Once the temperature was beyond 154 °C after determination with DSC–FTIR microspectroscopy, several new IR absorption peaks at 3165, 1736, 1684, 1319, 1221, and 1176 cm−1 due to the IMC–SAC co-crystal formation via an intermolecular interaction were simultaneously observed from the thermal-dependent three-dimensional FTIR spectral contour. This one-step DSC–FTIR microspectroscopic system giving thermodynamic and spectroscopic information could easily and directly screen and detect the IMC–SAC co-crystal formation in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun CC. Cocrystallization for successful drug delivery. Expert Opin Drug Deliv. 2013;10:201–13.

    Article  CAS  Google Scholar 

  2. Chadha R, Saini A, Arora P, Bhandari S. Pharmaceutical cocrystals: a novel approach for oral bioavailability enhancement of drugs. Crit Rev Ther Drug Carr Syst. 2012;29:183–218.

    Article  CAS  Google Scholar 

  3. Blagden N, de Matas M, Gavan PT, York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev. 2007;59:617–30.

    Article  CAS  Google Scholar 

  4. Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: an overview. Int J Pharm. 2011;419:1–11.

    Article  CAS  Google Scholar 

  5. Friščić T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an update. J Pharm Pharmacol. 2010;62:1547–59.

    Article  Google Scholar 

  6. Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci. 2013;34:185–93.

    Article  CAS  Google Scholar 

  7. Mirza S, Miroshnyk I, Heinämäki J, Yliruusi J. Co-crystals: an emerging approach for enhancing properties of pharmaceutical solids. Dosis. 2008;24:90–6.

    Google Scholar 

  8. Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: a novel approach to modify physicochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci. 2009;71:359–70.

    Article  CAS  Google Scholar 

  9. Thakuria R, Delori A, Jones W, Lipert MP, Roy L, Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int J Pharm. 2013;453:101–25.

    Article  CAS  Google Scholar 

  10. FDA. Guidance for industry: regulatory classification of pharmaceutical co-crystals. April, 2013.

  11. Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin Drug Deliv. 2009;6:333–41.

    Article  CAS  Google Scholar 

  12. Trask AV. An overview of pharmaceutical cocrystals as intellectual property. Mol Pharm. 2007;4:301–9.

    Article  CAS  Google Scholar 

  13. Sekhon BS. Pharmaceutical co-crystals: a review. Ars Pharm. 2009;50:99–117.

    Google Scholar 

  14. Bysouth SR, Bis JA, Igo D. Cocrystallization via planetary milling: enhancing throughput of solid-state screening methods. Int J Pharm. 2011;411:169–71.

    Article  CAS  Google Scholar 

  15. Shan N, Toda F, Jones W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun. 2002;21:2372–3.

    Article  Google Scholar 

  16. Trask AV, Motherwell WDS, Jones W. Mechanochemistry and co-crystal formation: effect of solvent on reaction kinetics. Chem Commun. 2004;23:890–1.

    Article  Google Scholar 

  17. Braga D, Maini L, Grepioni F. Mechanochemical preparation of co-crystals. Chem Soc Rev. 2013;42:7638–48.

    Article  CAS  Google Scholar 

  18. Zhang GC, Lin HL, Lin SY. Thermal analysis and FTIR spectral curve-fitting investigation of formation mechanism and stability of indomethacin–saccharin cocrystals via solid-state grinding process. J Pharm Biomed Anal. 2012;66:162–9.

    Article  CAS  Google Scholar 

  19. Hsu PC, Lin HL, Wang SL, Lin SY. Solid-state thermal behavior and stability studies of theophylline-citric acid cocrystals prepared by neat cogrinding or thermal treatment. J Solid State Chem. 2012;192:238–45.

    Article  CAS  Google Scholar 

  20. Berry DJ, Seaton CC, Clegg W, Harrington RW, Coles SJ, Norton PN, Hursthouse MB, Storey R, Jones W, Blagden N. Applying hot-stage microscopy of co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des. 2008;8:1697–712.

    Article  CAS  Google Scholar 

  21. Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm. 2008;10:665–8.

    Article  CAS  Google Scholar 

  22. Wu TK, Lin SY, Lin HL, Huang YT. Simultaneous DSC–FTIR microspectroscopy used to screen and detect the co-crystal formation in real time. Bioorg Med Chem Lett. 2011;21:3148–51.

    Article  CAS  Google Scholar 

  23. Hsu CH, Lin SY. Rapid examination of the kinetic process of intramolecular lactamization of gabapentin using DSC–FTIR. Thermochim Acta. 2009;486:5–10.

    Article  CAS  Google Scholar 

  24. Lin SY, Cheng WT, Wei YS, Lin HL. DSC–FTIR microspectroscopy used to investigate the thermal-induced Intramolecular cyclic anhydride formation between Eudragit E and PVA copolymer. Polym J. 2011;43:577–80.

    Article  CAS  Google Scholar 

  25. Wang SL, Wong YC, Cheng WT, Lin SY. A continuous process for solid-state dehydration, amorphization and recrystallization of metoclopramide HCL monohydrate studied by simultaneous DSC–FTIR microspectroscopy. J Thermal Anal Calorim. 2011;104:261–4.

    Article  CAS  Google Scholar 

  26. Lin SY, Wang SL. Advances in simultaneous DSC–FTIR microspectroscopy for rapid solid-state chemical stability studies: some dipeptide drugs as examples. Adv Drug Deliv Rev. 2012;64:461–78.

    Article  CAS  Google Scholar 

  27. Basavoju S, Boström D, Velaga SP. Indomethacin–saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res. 2008;25:530–41.

    Article  CAS  Google Scholar 

  28. Allesø M, Velaga SP, Alhalaweh A, Cornett C, Rasmussen MA, Van den Berg F, de Diego HL, Rantanen J. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy. Anal Chem. 2008;80:7755–64.

    Article  Google Scholar 

  29. Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm. 2011;407:63–71.

    Article  CAS  Google Scholar 

  30. Pal S, Roopa BN, Abu K, Manjunath SG, Nambiar S. Thermal studies of furosemide–caffeine binary system that forms a cocrystal. J Therm Anal Calorim. 2014;115:2261–8.

    Article  CAS  Google Scholar 

  31. Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG. Formation of indomethacin–saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci. 2009;38:9–17.

    Article  CAS  Google Scholar 

  32. Mura P, Cirri M, Faucci MT, Ginès-Dorado JM, Bettinetti GP. Investigation of the effects of grinding and co-grinding on physicochemical properties of glisentide. J Pharm Biomed Anal. 2002;30:227–37.

    Article  CAS  Google Scholar 

  33. Giron D. Thermal analysis, microcalorimetry and combined techniques for the study of pharmaceuticals. J Therm Anal Calorim. 1999;56:1285–304.

    Article  CAS  Google Scholar 

  34. Drebushchak VA, Drebushchak TN, Boldyreva EV. New interpretation of heat effects in polymorphic transitions. J Therm Anal Calorim. 2013;113:419–24.

    Article  CAS  Google Scholar 

  35. Umeda Y, Fukami T, Furuishi T, Suzuki T, Makimura M, Tomono K. Molecular complex consisting of two typical external medicines: intermolecular interaction between indomethacin and lidocaine. Chem Pharm Bull (Tokyo). 2007;55:832–6.

    Article  CAS  Google Scholar 

  36. Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA. Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm. 2010;7:227–36.

    Article  CAS  Google Scholar 

  37. Del Arco M, Cebadera E, Gutiérrez S, Martín C, Montero MJ, Rives V, Rocha J, Sevilla MA. Mg, Al layered double hydroxides with intercalated indomethacin: synthesis, characterization, and pharmacological study. J Pharm Sci. 2004;93:1649–58.

    Article  Google Scholar 

  38. Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res. 2006;23:2381–92.

    Article  CAS  Google Scholar 

  39. Jovanovski G. The SO2 stretching vibrations in some metal saccharinates: spectra-structure correlations. Spectrosc Lett. 1995;28:1095–109.

    Article  CAS  Google Scholar 

  40. Ali HRH, Alhalaweh A, Mendes NFC, Ribeiro-Claro P, Velaga SP. Solid-state vibrational spectroscopic investigation of cocrystals and salt of indomethacin. CrystEngComm. 2012;14:6665–74.

    Article  CAS  Google Scholar 

  41. Tong P, Zografi G. A study of amorphous molecular dispersions of indomethacin and its sodium salt. J Pharm Sci. 2001;90:1991–2004.

    Article  CAS  Google Scholar 

  42. Terife G, Wang P, Faridi N, Gogos CG. Hot melt mixing and foaming of soluplus and indomethacin. Polym Eng Sci. 2012;52:1629–39.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Council, Taipei, Taiwan, ROC (NSC 100-2320-B-264-001-MY3).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Liang Lin or Shan-Yang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HL., Zhang, GC. & Lin, SY. Real-time co-crystal screening and formation between indomethacin and saccharin via DSC analytical technique or DSC–FTIR microspectroscopy. J Therm Anal Calorim 120, 679–687 (2015). https://doi.org/10.1007/s10973-014-3787-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-014-3787-2

Keywords

Navigation