Skip to main content
Log in

Improved dehydrogenation/rehydrogenation performance of LiBH4 by doping mesoporous Fe2O3 or/and TiF3

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The LiBH4 + mesoporous Fe2O3 (defined as M-Fe2O3) mono-doped and LiBH4 + M-Fe2O3 + TiF3 co-doped hybrid materials were prepared by ball milling process. A variety of characterization methods, such as thermogravimetric, differential scanning calorimetry, X-ray diffraction, and pressure–composition–temperature instrument, were used for examinations of the two materials’ performances of storage/release of hydrogen, catalytic activity, kinetics, and thermodynamics. All the results showed that the M-Fe2O3 prepared in laboratory exhibited a good catalytic effect. Compared with the performance of M-Fe2O3 mono-doped system, M-Fe2O3 and TiF3 co-doped mode exhibits a better performance using the same additive content. Thus, the M-Fe2O3 and TiF3 co-doped mode possesses a collaborative catalytic utility with the LiBH4 hydrogen performance improved, showing a promising application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Pekker S, Salvetat J-P, Jakab E, Bonard J-M, Forró L. Hydrogenation of carbon nanotubes and graphite in liquid ammonia. J Phys Chem B. 2001;105:7938–43.

    Article  CAS  Google Scholar 

  2. Logvinenko VA, Yutkin MP, Zavakhina MS, Fedin VP. Porous metal–organic frameworks (MOFs) as matrices for inclusion compounds kinetic stability under heating. J Therm Anal Calorim. 2012;. doi:10.1007/s10973-012-2296-4.

    Google Scholar 

  3. Schüth F, Bogdanović B, Felderhoff M. Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun. 2004;20:2249–58.

    Article  Google Scholar 

  4. Zhou Y-X, Sun L-X, Cao Z, Zhang J, Xu F, Song L-F, Zhao Z-M, Zou Y-J. Heat capacities and thermodynamic properties of M(HBTC) (4,4′-bipy)·3DMF (M = Ni and Co). J Therm Anal Calorim. 2011;. doi:10.1007/s10973-011-1889-7.

    Google Scholar 

  5. Mao J, Guo Z, Leng H, Zhu W, Guo Y, Xuebin Y, Liu H. Reversible hydrogen storage in destabilized LiAlH4–MgH2–LiBH4 ternary-hydride system doped with TiF3. J Phys Chem C. 2010;114:11643–9.

    Article  CAS  Google Scholar 

  6. Grochala W, Edwards PP. Thermal decomposition of the non-interstitial hydrides for the storage and production of hydrogen. Chem Rev. 2004;104:1283–316.

    Article  CAS  Google Scholar 

  7. DOE Targets for Onboard Hydrogen Storage Systems for Light-Duty Vehicles. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/pdfs/targets_onboard_hydro_storage.pdf.

  8. Sun D, Srinivasan SS, Kiyobayashi T, Kuriyama N, Jensen CM. Rehydrogenation of dehydrogenated NaAlH4 at low temperature and pressure. J Phys Chem B. 2003;107:10176–9.

    Article  CAS  Google Scholar 

  9. Chen J, Kuriyama N, Qiang X, Takeshita HT, Sakai T. Reversible hydrogen storage via titanium-catalyzed LiAlH4 and Li3AlH6. J Phys Chem B. 2001;105:11214–20.

    Article  CAS  Google Scholar 

  10. Chen P, Xiong Z, Luo J, et al. Interaction of hydrogen with metal nitrides and imides. Nature. 2002;420:302–4.

    Article  CAS  Google Scholar 

  11. Yang J, Sudik A, Siegel DJ, Halliday D, Drews A, Carter RO, Wolverton C, Lewis GJ, Adriaan Sachtler JW, Low JJ, Faheem SA, Lesch DA, Ozolinš V. A self-catalyzing hydrogen-storage material. Angew Chem Int Ed. 2008;47:882–7.

    Article  CAS  Google Scholar 

  12. Barkhordarian G, Klassen T, Dornheim M, Bormann R. Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloy Compd. 2007;440:L18–21.

    Article  CAS  Google Scholar 

  13. Juan X, Xuebin Y, Zou Z, Li Z, Zhu W, Akins DL, Yang H. Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem Commun. 2008;44:5740–2.

    Google Scholar 

  14. Li ZP, Liu BH, Arai K, Suda S. A fuel cell development for using borohydrides as the fuel. J Electrochem Soc. 2003;150:A868–72.

    Article  CAS  Google Scholar 

  15. Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Züttel A. Dehydriding and rehydriding reactions of LiBH4. J Alloy Compd. 2005;404–406:427–30.

    Article  Google Scholar 

  16. Vajo JJ, Olson GL. Hydrogen storage in destabilized chemical systems. Scripta Mater. 2007;56:829–34.

    Article  CAS  Google Scholar 

  17. Fang ZZ, Wang P, Rufford TE, Kang XD, Lu GQ, Cheng HM. Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon. Acta Mater. 2008;56:6257–63.

    Article  CAS  Google Scholar 

  18. Miwa K, Ohba N, Towata S. First-principles study on lithium borohydride LiBH4. Phys Rev B. 2004;6:245120.

    Article  Google Scholar 

  19. Miwa K, Ohba N, Towata S, Nakamori Y, Orimo S. First-principles study on copper-substituted lithium borohydride, (Li1−x Cu x )BH4. J Alloy Compd. 2005;404–406:140–3.

    Article  Google Scholar 

  20. Yang WN, Shang CX, Guo ZX. Site density effect of Ni particles on hydrogen desorption of MgH2. Int J Hydrogen Energy. 2010;35:4534–42.

    Article  CAS  Google Scholar 

  21. Crosby K, Wan X, Shaw LL. Improving solid-state hydriding and dehydriding properties of the LiBH4 plus MgH2 system with the addition of Mn and V dopants. J Power Sources. 2010;195:7380–5.

    Article  CAS  Google Scholar 

  22. Züttel A, Rentsch S, Fischer P, Wenger P, Sudan P, Mauron Ph, Emmenegger Ch. Hydrogen storage properties of LiBH4. J Alloy Compd. 2003;356–357:515–20.

    Article  Google Scholar 

  23. Züttel A, Wenger P, Rentsch S, Sudan P, Mauron Ph, Emmenegger Ch. LiBH4 a new hydrogen storage material. J Power Sources. 2003;118:1–7.

    Article  Google Scholar 

  24. Yu XB, Grant DM, Walker GS. Dehydrogenation of LiBH4 destabilized with various oxides. J Phys Chem C. 2009;113:17945–9.

    Article  CAS  Google Scholar 

  25. Vajo JJ, Skeith SL. Reversible storage of hydrogen in destabilized LiBH4. J Phys Chem B. 2005;109:3719–22.

    Article  CAS  Google Scholar 

  26. Ming A, Jurgensen A. Modified lithium borohydrides for reversible hydrogen storage. J Phys Chem B. 2006;110:7062–7.

    Article  Google Scholar 

  27. Ming A, Jurgensen A, Zeigler K. Modified lithium borohydrides for reversible hydrogen storage (2). J Phys Chem B. 2006;110:26482–7.

    Article  Google Scholar 

  28. Ming A, Jurgensen AR, Spencer WA, Anton DL, Pinkerton FE, Hwang S-J, Kim C, Bowman RC. Stability and reversibility of lithium borohydrides doped by metal halides and hydrides. J Phys Chem C. 2008;112:18661–71.

    Google Scholar 

  29. Zaluski L, Zaluska A, Ström-Olsen JO. Nanocrystalline metal hydrides. J Alloy Compd. 1997;253–254:70–9.

    Article  Google Scholar 

  30. Bérubé V, Radtke G, Dresselhaus M, Chen G. Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res. 2007;31:637–63.

    Article  Google Scholar 

  31. Rudy WP, Wagemans JH, van Lenthe PE, de Jongh A, van Dillen J, de Jong KP. Hydrogen storage in magnesium clusters: quantum chemical study. J Am Chem Soc. 2005;127:16675–80.

    Article  Google Scholar 

  32. Gutowska A, Li L, Shin Y, Wang CM, Xiaohong S, Linehan JC, Scott Smith R, Kay BD, Schmid B, Shaw W, Gutowski M, Autrey T. Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane. Angew Chem Int Ed. 2005;44:3578–82.

    Article  CAS  Google Scholar 

  33. Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP. Facilitated hydrogen storage in NaAlH4 supported on carbon nanofibers. Angew Chem Int Ed. 2006;45:3501–3.

    Article  Google Scholar 

  34. Baldé CP, Hereijgers BPC, Bitter JH, de Jong KP. Sodium alanate nanoparticles-linking size to hydrogen storage properties. J Am Chem Soc. 2008;130:6761–5.

    Article  Google Scholar 

  35. Gross AF, Vajo JJ, Van Atta SL, Olson GL. Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J Phys Chem C. 2008;112:5651–7.

    Article  CAS  Google Scholar 

  36. Cahen S, Eymery J-B, Janot R, Tarascon J-M. Improvement of the LiBH4 hydrogen desorption by inclusion into mesoporous carbons. J Power Sources. 2009;189:902–8.

    Article  CAS  Google Scholar 

  37. Huang CL, Zhang HY, Sun ZY, Liu ZM. Chitosan-mediated synthesis of mesoporous α-Fe2O3 nanoparticles and their applications in catalyzing selective oxidation of cyclohexane. Sci China Chem. 2010;53:1502–8.

    Article  CAS  Google Scholar 

  38. Zhang H, Zhou YX, Sun LX, Cao Z, Xu F, Liu SS, Zhang J, Song LF, Si XL, Jiao CL, Wang S, Li ZB, Liu S, Li F. Synergistic catalysis of Fe2O3 and TiF3 additives on the LiBH4–MgH2 composite. Chem J Chin Univ. 2012;33:1–5.

    Google Scholar 

  39. Qi YN, Zhang J, Qiu SJ, Sun LX, Xu F, Zhu M, et al. Thermal stability, decomposition and glass transition behavior of PANI/NiO composites. J Therm Anal Calorim. 2009;98:533–7.

    Article  CAS  Google Scholar 

  40. Jiao CL, Song LF, Jiang CH, Zhang J, Si XL, Qiu SJ, Wang S, Sun LX, Xu F, Li F, Zhao JL. Low-temperature heat capacities and thermodynamic properties of Mn3(HEDTA)2·H2O. J Therm Anal Calorim. 2010;102:1155–60.

    Article  CAS  Google Scholar 

  41. Jiang CH, Song LF, Jiao CL, Zhang J, Sun LX, Xu F, Zhang HZ, Xu QY, Gabelica Z. Determination of heat capacities and thermodynamic properties of two structurally unrelated but isotypic calcium and manganese(II)2,6-naphthalene dicarboxylate-based MOFs. J Therm Anal Calorim. 2011;103:1095–103.

    Article  CAS  Google Scholar 

  42. Song LF, Jiang CH, Jiao CL, Zhang J, Sun LX, Xu F, Jiao QZ, Xing YH, Du Y, Cao Z, Huang FL. Heat capacities and thermodynamic properties of one manganese-based MOFs. J Therm Anal Calorim. 2010;102:1161–6.

    Article  CAS  Google Scholar 

  43. Jiang CH. Synthesis, thermochemistry, adsorption and senor performances of organic-inorganic coordination polymers. Dissertation for Doctoral Degree, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 2011; p. 131–2.

  44. Wang P, Kang XD, Cheng HM. Improved hydrogen storage of TiF3-doped NaAlH4. ChemPhysChem. 2005;6:2488–91.

    Article  CAS  Google Scholar 

  45. Mosegaard L, Møller B, Jørgensen J-E, et al. Intermediate phases observed during decomposition of LiBH4. J Alloy Compd. 2007;446–447:301–5.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the “973 Project” (2010CB631303), NSFC (20833009, 51071146, 21173111, 20903095, 51071081, 51101145, U0734005, and 51102230), Liaoning BaiQianWan Talents Program (No. 2010921050), Liaoning Education Committee (L2010223), Solar Energy Action Plan of CAS, IUPAC (Project No. 2008-006-3-100), The Joint Project of Guangdong Province and Chinese Academy of Sciences (2010A090100034), and the State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Grant No. KFJJ10-1Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Cao, Li-Xian Sun or Fen Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Cao, Z., Sun, LX. et al. Improved dehydrogenation/rehydrogenation performance of LiBH4 by doping mesoporous Fe2O3 or/and TiF3 . J Therm Anal Calorim 112, 1407–1414 (2013). https://doi.org/10.1007/s10973-012-2721-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2721-8

Keywords

Navigation