Skip to main content
Log in

Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Bloodmeal can be used to manufacture thermoplastics, but requires water, urea, sodium sulphite, and sodium dodecyl sulphate to modify chain mobility. Transition temperatures of bloodmeal, modified bloodmeal, and processed bloodmeal-based thermoplastics were compared using material pocket dynamic mechanical thermal analysis. The glass transition temperature (T g) of bloodmeal dropped from 493 to 263 K using only water as a plasticizer but was restored when freeze dried. Modifying bloodmeal lowered T g to 193 K. This was raised by drying, but not to that of unmodified bloodmeal indicating a permanent change. Three additional transitions were identified above T g, for modified bloodmeal between 300 and 480 K. These were thought to be transitions of dehydrated bulk amorphous regions, amorphous regions between crystallites and chains segments in crystallites and were also seen at lower temperatures when replacing some water with tri-ethylene glycol (TEG). Material pockets increased resolution in processed samples. One broad T g was observed in consolidated bars, at 335 or 350 K with or without TEG. In material pockets, these resolved into three transitions, similar to those observed before processing. Changes in relative magnitudes suggested some chain rearrangement leading to more bulk amorphous regions. Differences were detected between onset of drop in storage modulus and peaks in loss modulus and tan δ in pockets or bars, but generally led to the same conclusions. For bar samples, it was helpful to compare natural and log modulus scales. Good practice would use all these techniques in parallel to correctly identify relaxation temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Verbeek CJR, van den Berg LE. Extrusion processing and properties of protein-based thermoplastics. Macromol Mater Eng. 2010;295(1):10–21. doi:10.1002/mame.200900167.

    Article  CAS  Google Scholar 

  2. Verbeek CJR, van den Berg LE. Development of proteinous bioplastics using bloodmeal. J Polym Environ. 2010;1:1–10. doi:10.1007/s10924-010-0232-x.

    Google Scholar 

  3. Bennion BJ, Daggett V. The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci USA. 2003;100(9):5142–7. doi:10.1073/pnas.0930122100.

    Article  CAS  Google Scholar 

  4. Verbeek CJR, Viljoen C, Pickering KL, van den Berg LE. Plastics material. NZ Patent NZ551531. Waikatolink Limited, Hamilton (2009).

  5. Verbeek CJR, van den Berg LE. Structural changes as a result of processing in thermoplastic bloodmeal. J Appl Polym Sci. 2012. doi:10.1002/app.36964.

  6. Silalai N, Roos YH. Dielectric and mechanical properties around glass transition of milk powders. Dry Technol. 2010;28(9):1044–54. doi:10.1080/07373937.2010.505520.

    Article  CAS  Google Scholar 

  7. Menard KP. Dynamic mechanical analysis: a practical introduction. 2nd ed. Boca Raton, FL: CRC Press; 2008.

    Book  Google Scholar 

  8. Royall PG, Huang CY, Tang SWJ, Duncan J, Van-de-Velde G, Brown MB. The development of DMA for the detection of amorphous content in pharmaceutical powdered materials. Int J Pharm. 2005;301(1–2):181–91. doi:10.1016/j.ijpharm.2005.05.015.

    Article  CAS  Google Scholar 

  9. Pinheiro A, Mano JF. Study of the glass transition on viscous-forming and powder materials using dynamic mechanical analysis. Polym Test. 2009;28(1):89–95. doi:10.1016/j.polymertesting.2008.11.008.

    Article  CAS  Google Scholar 

  10. Carpenter J, Katayama D, Liu L, Chonkaew W, Menard K. Measurement of t-g in lyophilized protein and protein excipient mixtures by dynamic mechanical analysis. J Therm Anal Calorim. 2009;95(3):881–4. doi:10.1007/s10973-007-8986-7.

    Article  CAS  Google Scholar 

  11. Raschip IE, Yakimets I, Martin CP, Paes SS, Vasile C, Mitchell JR. Effect of water content on thermal and dynamic mechanical properties of xanthan powder: a comparison between standard and novel techniques. Powder Technol. 2008;182(3):436–43.

    Article  CAS  Google Scholar 

  12. Silalai N, Roos YH. Coupling of dielectric and mechanical relaxations with glass transition and stickiness of milk solids. J Food Eng. 2011;104(3):445–54.

    Article  CAS  Google Scholar 

  13. Gearing J, Malik KP, Matejtschuk P. Use of dynamic mechanical analysis (DMA) to determine critical transition temperatures in frozen biomaterials intended for lyophilization. Cryobiology. 2010;61(1):27–32.

    Article  CAS  Google Scholar 

  14. Gârea S-A, Iovu H, Nicolescu A, Deleanu C. Thermal polymerization of benzoxazine monomers followed by GPC, FTIR and DETA. Polym Test. 2007;26(2):162–71.

    Article  Google Scholar 

  15. Gupta P, Bansal AK. Devitrification of amorphous celecoxib. AAPS PharmSciTech. 2005;6(2):E223–30. doi:10.1208/pt060232.

    Article  Google Scholar 

  16. Mano JF. Thermal behaviour and glass transition dynamics of inclusion complexes of alpha-cyclodextrin with poly(d,l-lactic acid). Macromol Rapid Commun. 2008;29(15):1341–5. doi:10.1002/marc.200800180.

    Article  CAS  Google Scholar 

  17. Paes SS, Sun SM, MacNaughtan W, Ibbett R, Ganster J, Foster TJ, et al. The glass transition and crystallization of ball milled cellulose. Cellulose. 2010;17(4):693–709. doi:10.1007/s10570-010-9425-7.

    Article  CAS  Google Scholar 

  18. Williams MA, Jones DS, Andrews GP. A study of drug-polymer miscibility using dynamic mechanical thermal analysis. J Pharm Pharmacol. 2010;62(10):1400.

    CAS  Google Scholar 

  19. Silalai N, Roos YH. Mechanical relaxation times as indicators of stickiness in skim milk-maltodextrin solids systems. J Food Eng. 2011;106(4):306–17.

    Article  CAS  Google Scholar 

  20. Kemal E, Adesanya KO, Deb S. Phosphate based 2-hydroxyethyl methacrylate hydrogels for biomedical applications. J Mater Chem. 2011;21(7):2237–45. doi:10.1039/c0jm02984j.

    Article  CAS  Google Scholar 

  21. ASTM International. D638-03 standard test method for tensile properties of plastics. PA 19428-2959. ASTM International, West Conshohocken, PA; 2004.

  22. Guo JX, Harn N, Robbins A, Dougherty R, Middaugh CR. Stability of helix-rich proteins at high concentrations. Biochemistry. 2006;45(28):8686–96. doi:10.1021/bi060525p.

    Article  CAS  Google Scholar 

  23. Michnik A. Thermal stability of bovine serum albumin DSC study. J Therm Anal Calorim. 2003;71(2):509–19. doi:10.1023/a:1022851809481.

    Article  CAS  Google Scholar 

  24. Heijboer J, Secondary loss peaks in glassy amorphous polymers. In: Boyer RF, Meier DJ. Midland macromolecular institute. In Dow Chemical Company, editors. Molecular basis of transitions and relaxations: papers. Midland macromolecular monographs. London: Gordon and Breach Science Publishers; 1978. p. xii, 429.

  25. Rouilly A, Orliac O, Silvestre F, Rigal L. DSC study on the thermal properties of sunflower proteins according to their water content. Polymer. 2001;42(26):10111–7.

    Article  CAS  Google Scholar 

  26. Zhang J, Mungara P, Jane J. Mechanical and thermal properties of extruded soy protein sheets. Polymer. 2001;42(6):2569–78.

    Article  CAS  Google Scholar 

  27. Jerez A, Partal P, Martinez I, Gallegos C, Guerrero A. Rheology and processing of gluten based bioplastics. Biochem Eng J. 2005;26(2–3):131–8. doi:10.1016/j.bej.2005.04.010.

    Article  CAS  Google Scholar 

  28. Panagopoulou A, Kyritsis A, Serra RSI, Ribelles JLG, Shinyashiki N, Pissis P. Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. BBA-Proteins Proteomics. 2011;1814(12):1984–96. doi:10.1016/j.bbapap.2011.07.014.

    Article  CAS  Google Scholar 

  29. Mo X, Sun X. Effects of storage time on properties of soybean protein-based plastics. J Polym Environ. 2003;11(1):15–22.

    Article  CAS  Google Scholar 

  30. Mo XQ, Sun XZ. Thermal and mechanical properties of plastics molded from urea-modified soy protein isolates. J Am Oil Chem Soc. 2001;78(8):867–72.

    Article  CAS  Google Scholar 

  31. Oliviero M, Maio ED, Iannace S. Effect of molecular structure on film blowing ability of thermoplastic zein. J Appl Polym Sci. 2010;115(1):277–87.

    Article  CAS  Google Scholar 

  32. Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. Hoboken: Wiley; 2009.

    Book  Google Scholar 

  33. van Krevelen DW, Nijenhuis Kt. Properties of polymers :their correlation with chemical structure : their numerical estimation and prediction from additive group contributions, 4th edn. Amsterdam: Elsevier; 2009.

  34. Dow Chemical Company. Triethylene glycol. 2007. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_004d/0901b8038004d042.pdf. Accessed 8 March 2012.

  35. Verbeek C, Koppel N. Moisture sorption and plasticization of bloodmeal-based thermoplastics. J Mater Sci. 2011;47:1187–95. doi:10.1007/s10853-011-5770-7.

    Article  Google Scholar 

  36. Boyer RF, Turley SG. Molecular Motion in polystyrene. In: Boyer RF, Meier DJ, Midland Macromolecular Institute, Dow Chemical Company, editors. Molecular basis of transitions and relaxations: papers. Midland macromolecular monographs, vol. 4. London: Gordon and Breach Science Publishers; 1978. p. xii, 429.

  37. ASTM International. E1640-04 standard test method for assignment of the glass transition temperature by dynamic mechanical analysis. West Conshohocken, PA: ASTM International; 2004.

  38. Boyd RH. Relaxation processes in crystalline polymers: experimental behavior—a review. Polymer. 1985;26(3):323–47. doi:10.1016/0032-3861(85)90192-2.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Bier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bier, J.M., Verbeek, C.J.R. & Lay, M.C. Identifying transition temperatures in bloodmeal-based thermoplastics using material pocket DMTA. J Therm Anal Calorim 112, 1303–1315 (2013). https://doi.org/10.1007/s10973-012-2680-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2680-0

Keywords

Navigation