Skip to main content
Log in

Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The molecular dynamics of a quenched poly(ether ether ketone) (PEEK) was studied over a broad frequency range from 10−3 to 10Hz by combining dynamic dielectric spectroscopy (DDS) and thermo-stimulated current (TSC) analysis. The dielectric relaxation losses ε′′KK has been determined from the real part ε′T(ω) thanks to Kramers–Kronig transform. In this way, conduction and relaxation processes can be analyzed independently. Two secondary dipolar relaxations, the γ and the β modes, corresponding to non-cooperative localized molecular mobility have been pointed out. The main α relaxation appeared close to the glass transition temperature as determined by DSC; it has been attributed to the delocalized cooperative mobility of the free amorphous phase. The relaxation times of dielectric relaxations determined with TSC at low frequency converge with relaxation times extracted from DDS at high frequency. This correlation emphasized continuity of mobility kinetics between vitreous and liquid state. The dielectric spectroscopy exhibits the αc relaxation, near 443 K, which has been associated with the rigid amorphous phase confined by crystallites. This present experiment demonstrates coherence of the dynamics of the PEEK heterogeneous amorphous phase between glassy and liquid state and significantly improve the knowledge of molecular/dynamic structure relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kemmish D. Update on the technology and applications of polyaryletheretherketones. Shrewsbury: ISmithers Rapra Pub.; 2010.

  2. Cheng SZD, Cao MY, Wunderlich B. Glass-transition and melting behavior of poly(oxy-1,4-phenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene). Macromolecules. 1986;19(7):1868–76.

    Article  CAS  Google Scholar 

  3. Sauer BB, Hsiao BS. Effect of the heterogeneous distribution of lamellar stacks on amorphous relaxations in semicrystalline polymers. Polymer. 1995;36(13):2553–8.

    Article  CAS  Google Scholar 

  4. Huo PT, Cebe P. Temperature-dependent relaxation of the crystal amorphous interphase in poly(ether ether ketone). Macromolecules. 1992;25(2):902–9.

    Article  CAS  Google Scholar 

  5. Arous M, Ben Arnor I, Kallel A, Fakhfakh Z, Perrier G. Crystallinity and dielectric relaxations in semi-crystalline poly(ether ether ketone). J Phys Chem Solids. 2007;68(7):1405–14.

    Article  CAS  Google Scholar 

  6. Jonas A, Legras R. Relation between peek semicrystalline morphology and its subglass relaxations and glass-transition. Macromolecules. 1993;26(4):813–24.

    Article  CAS  Google Scholar 

  7. Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether-ketone). Polymer. 1983;24(8):953–8.

    Article  CAS  Google Scholar 

  8. Verma R, Marand H, Hsiao B. Morphological changes during secondary crystallization and subsequent melting in poly(ether ether ketone) as studied by real time small angle X-ray scattering. Macromolecules. 1996;29(24):7767–75.

    Article  CAS  Google Scholar 

  9. Ko TY, Woo EM. Changes and distribution of lamellae in the spherulites of poly(ether ether ketone) upon stepwise crystallization. Polymer. 1996;37(7):1167–75.

    Article  CAS  Google Scholar 

  10. Cebe P, Hong SD. Crystallization behavior of poly(etheretherketone). Polymer. 1986;27(8):1183–92.

    Article  CAS  Google Scholar 

  11. Chen H, Cebe P. Investigation of the rigid amorphous fraction in nylon-6. J Therm Anal Calorim. 2007;89(2):417–25.

    Article  CAS  Google Scholar 

  12. Kalakkunnath S, Kalika DS. Dynamic mechanical and dielectric relaxation characteristics of poly(trimethylene terephthalate). Polymer. 2006;47(20):7085–94.

    Article  CAS  Google Scholar 

  13. Sasuga T, Hagiwara M. Molecular motions of non-crystalline poly(aryl ether–ether-ketone) peek and influence of electron-beam irradiation. Polymer. 1985;26(4):501–5.

    Article  CAS  Google Scholar 

  14. David L, Girard C, Dolmazon R, Albrand M, Etienne S. Molecular mobility in para-substituted polyaryls. 3. Low-temperature dynamics. Macromolecules. 1996;29(26):8343–8.

    Article  CAS  Google Scholar 

  15. Bas C, Fugier M, Alberola ND. Reinforcement effect and molecular motions in semicrystalline peek films: mechanical and physical modelings. 1. J Appl Polym Sci. 1997;64(6):1041–52.

    Article  CAS  Google Scholar 

  16. David L, Etienne S. Molecular mobility in para-substituted polyaryls. 1. Sub-t(g) relaxation phenomena in poly(aryl ether ether ketone). Macromolecules. 1992;25(17):4302–8.

    Article  CAS  Google Scholar 

  17. Krishnaswamy RK, Kalika DS. Dynamic-mechanical relaxation properties of poly(ether ether ketone). Polymer. 1994;35(6):1157–65.

    Article  CAS  Google Scholar 

  18. Kalika DS, Krishnaswamy RK. Influence of crystallinity on the dielectric-relaxation behavior of poly(ether ether ketone). Macromolecules. 1993;26(16):4252–61.

    Article  CAS  Google Scholar 

  19. Nogales A, Ezquerra TA, Batallan F, Frick B, Lopez-Cabarcos E, Balta-Calleja FJ. Restricted dynamics in poly(ether ether ketone) as revealed by incoherent quasielastic neutron scattering and broad-band dielectric spectroscopy. Macromolecules. 1999;32(7):2301–8.

    Article  CAS  Google Scholar 

  20. Verot S, Battesti P, Perrier G. Semi-empirical calculations and dielectric spectrometry of molecular units in peek. Polymer. 1999;40(10):2605–17.

    Article  CAS  Google Scholar 

  21. Sakamoto WK. Dielectric spectroscopy and thermally stimulated discharge current in peek film. Eclet Quim. 2003;28(2):49–53.

    CAS  Google Scholar 

  22. Sauer BB, Avakian P, Starkweather HW, Hsiao BS. Thermally stimulated current and dielectric studies of poly(aryl ether ketone ketone). Macromolecules. 1990;23(24):5119–26.

    Article  CAS  Google Scholar 

  23. Mourguesmartin M, Bernes A, Lacabanne C. Thermally stimulated current study of the microstructure of peek. J Therm Anal. 1993;40(2):697–703.

    Article  CAS  Google Scholar 

  24. Kim EJ, Ohki Y. Ionic behavior of dc conduction in polyetheretherketone. IEEE Trans Dielectr Electr Insul. 1995;2(1):74–83.

    Article  CAS  Google Scholar 

  25. Bacharan C, Dessaux C, Bernes A, Lacabanne C. Thermally stimulated current spectroscopy of amorphous and semi-crystalline polymers. J Therm Anal Calorim. 1999;56(3):969–82.

    Article  CAS  Google Scholar 

  26. Goodwin AA, Hay JN. Dielectric and dynamic mechanical relaxation studies on poly(aryl ether ketone)s. J Polym Sci Pt B-Polym Phys. 1998;36(5):851–9.

    Article  CAS  Google Scholar 

  27. Fougnies C, Dosiere M, Koch MHJ, Roovers J. Morphological study and melting behavior of narrow molecular weight fractions of poly(aryl ether ether ketone) (peek) annealed from the glassy state. Macromolecules. 1998;31(18):6266–74.

    Article  CAS  Google Scholar 

  28. Teyssedre G, Mezghani S, Bernes A, Lacabanne C. Thermally stimulated currents of polymers. In: Runt JP, Fitzgerald JJ, editors. Dielectric spectroscopy of polymeric materials—fundamental and applications. Washington, DC: American Chemical Society 1997. p. 227.

  29. Teyssedre G, Demont P, Lacabanne C. Analysis of the experimental distribution of relaxation times around the liquid-glass transition of poly(vinylidene fluoride). J Appl Phys. 1996;79(12):9258–67.

    Article  CAS  Google Scholar 

  30. Delbreilh L, Negahban M, Benzohra M, Lacabanne C, Saiter JM. Glass transition investigated by a combined protocol using thermostimulated depolarization currents and differential scanning calorimetry. J Therm Anal Calorim. 2009;96(3):865–71.

    Article  CAS  Google Scholar 

  31. Starkweather HW. Simple and complex relaxations. Macromolecules. 1981;14(5):1277–81.

    Article  CAS  Google Scholar 

  32. Kremer F, Schönhals A. Broadband dielectric spectroscopy. Berlin: Springer; 2002.

    Google Scholar 

  33. Havriliak S, Negami S. A complex plane analysis of α-dispersions in some polymers systems. J Polym Sci. 1966;14:99–117.

    Google Scholar 

  34. Steeman PAM, vanTurnhout J. A numerical kramers-kronig transform for the calculation of dielectric relaxation losses free from ohmic conduction losses. Colloid Polym Sci. 1997;275(2):106–15.

    Article  CAS  Google Scholar 

  35. Schlosser E, Schonhals A, Carius HE, Goering H. Evaluation method of temperature-dependent relaxation behavior of polymers. Macromolecules. 1993;26(22):6027–32.

    Article  CAS  Google Scholar 

  36. Chen CL, Lee CL, Chen HL, Shih JH. Molecular-dynamics simulation of a phenylene polymer. 3. Peek. Macromolecules. 1994;27(26):7872–6.

    Article  CAS  Google Scholar 

  37. Poliks MD, Schaefer J. Characterization of the chain dynamics of PEEK by CPMAS 13C NMR. Macromolecules. 1990;23(14):3426–31.

    Article  CAS  Google Scholar 

  38. Hoffman JD, Williams G, Passaglia E. Analysis of the α, β and γ relaxations in polychlorotrifluoroethylene and polyethylene: dielectric and mechanical properties. J Polym Sci. 1966;14:173–235.

    Google Scholar 

  39. Capsal J-F, Dantras E, Dandurand J, Lacabanne C. Dielectric relaxations and ferroelectric behaviour of even-odd polyamide PA 6,9. Polymer. 2010;51(20):4606–10.

    Article  CAS  Google Scholar 

  40. Carsalade E, Bernes A, Lacabanne C, Perraud S, Lafourcade M, Savignac M. Transitions/relaxations in polyester adhesive/pet system. J Therm Anal Calorim. 2010;101(3):849–57.

    Article  CAS  Google Scholar 

  41. Diaham S, Bechara M, Locatelli ML, Lebey T. Influence of crystallization-induced amorphous phase confinement on alpha- and beta-relaxation molecular mobility in parylene f. J Appl Phys. 2011;110(6):063703.

    Article  Google Scholar 

  42. Jafarpour G, Dantras E, Boudet A, Lacabanne C. Molecular mobility of poplar cell wall polymers studied by dielectric techniques. J Non-Cryst Solids. 2008;354(27):3207–14.

    Article  CAS  Google Scholar 

  43. Dudognon E, Bernes A, Lacabanne C. Nature of molecular mobility through the glass transition in poly(n-alkyl methacrylates): a study by dielectric spectroscopies. J Macromol Sci-Phys. 2004;B43(3):591–604.

    CAS  Google Scholar 

  44. Lacabanne C, Lamure A, Teyssedre G, Bernes A, Mourgues M. Study of cooperative relaxation modes in complex-systems by thermally stimulated current spectroscopy. J Non-Cryst Solids. 1994;172:884–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dantras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonardi, A., Dantras, E., Dandurand, J. et al. Dielectric relaxations in PEEK by combined dynamic dielectric spectroscopy and thermally stimulated current. J Therm Anal Calorim 111, 807–814 (2013). https://doi.org/10.1007/s10973-012-2548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2548-3

Keywords

Navigation