Skip to main content
Log in

Thermal conductivity of polyurethane composites containing nanometer- and micrometer-sized silver particles

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyurethane composites containing spherical and flake-shaped silver fillers of micrometer and nanometer sizes were prepared by reacting suspensions of the silver filler in tetraethylene glycol with Desmodur® HL BA. Both the thermal conductivity and the stability of the silver composites are increased in comparison with a reference polyurethane sample without filler. Unexpectedly, the largest increases in thermal conductivity and stability are observed for the spherical silver particles of micrometer size but not for the silver nanoparticles, which is reasoned with larger aggregates of silver particles and a higher degree of crystallinity in the sample containing micrometer-sized silver particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Luedtke A. Thermal management materials for high-performance applications. Adv Eng Mater. 2004;6(3):142–4.

    Article  CAS  Google Scholar 

  2. Ong B, Chow SG, Tang E. Thermally enhanced, next-generation 3-D power packages: a heat-management solution. Adv Packaging. 2005;14(11):23–5.

    Google Scholar 

  3. Zweben C. Advances in composite materials for thermal management in electronic packaging. JOM. 1998;50(6):47–51.

    Article  CAS  Google Scholar 

  4. Zweben C. High-performance thermal management materials. Adv Packaging. 2006;15(2):20–2.

    Google Scholar 

  5. Zweben CH. Advances in high-performance thermal management materials: a review. J Adv Mater. 2007;39(1):3–10.

    CAS  Google Scholar 

  6. Bulsara M, Celler G, White T, Standley B, Huff H. Roadmap requirements for emerging materials. Solid State Technol. 2006;49(1):34–8.

    Google Scholar 

  7. Fletcher LS. A review of thermal enhancement techniques for electronic systems. IEEE T Compon Hybr. 1990;13(4):1012–21.

    Article  Google Scholar 

  8. Zweben C. Advanced thermal management materials for electronics and photonics. Adv Microelectron. 2010;37(4):14–9.

    CAS  Google Scholar 

  9. Saums D, Jarrett B, Mackie AC, Ross J. Thermal management materials choices for power semiconductors. Adv Microelectron. 2009;36(4):8–16.

    CAS  Google Scholar 

  10. Evans W, Prasher R, Fish J, Meakin P, Phelan P, Keblinski P. Effect of aggregation and interfacial thermal resistance on thermal conductivity of nanocomposites and colloidal nanofluids. Int J Heat Mass Tran. 2008;51(5–6):1431–8.

    Article  CAS  Google Scholar 

  11. Xingyi H, Pingkai J, Liyuan X. Ferroelectric polymer/silver nanocomposites with high dielectric constant and high thermal conductivity. Appl Phys Lett. 2009;95(24):242901.

    Article  Google Scholar 

  12. Chou CW, Hsu SH, Chang H, Tseng SM, Lin HR. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles. Polym Degrad Stabil. 2006;91(5):1017–24.

    Article  CAS  Google Scholar 

  13. Kim JY. Amphiphilic polyurethane-co-polystyrene network films containing silver nanoparticles. J Ind Eng Chem. 2003;9(1):37–44.

    CAS  Google Scholar 

  14. Chen S, Sui J, Chen L. Positional assembly of hybrid polyurethane nanocomposites via incorporation of inorganic building blocks into organic polymer. Colloid Polym Sci. 2004;283(1):66–73.

    Article  CAS  Google Scholar 

  15. Chou CW, Hsu SH, Wang PH. Biostability and biocompatibility of poly(ether)urethane containing gold or silver nanoparticles in a porcine model. J Biomed Mater Res A. 2008;84(3):785–94.

    Google Scholar 

  16. Dallas P, Sharma VK, Zboril R. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Adv Colloid Interfac. 2011;166(1–2):119–35.

    CAS  Google Scholar 

  17. Raja M, Shanmugharaj AM, Ryu SH, Subha J. Influence of metal nanoparticle decorated CNTs on polyurethane based electro active shape memory nanocomposite actuators. Mater Chem Phys. 2011;129(3):925–31.

    Article  CAS  Google Scholar 

  18. Lin M-F, Tsen W-C, Shu Y-C, Chuang F-S. Effect of silicon and phosphorus on the degradation of polyurethanes. J Appl Polym Sci. 2001;79(5):881–99.

    Article  CAS  Google Scholar 

  19. Hsu SH, Tseng HJ, Lin YC. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomater. 2010;31(26):6796–808.

    Article  CAS  Google Scholar 

  20. S-h Hsu, Chou C-W. Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degrad Stabil. 2004;85(1):675–80.

    Article  Google Scholar 

  21. Hung HS, Hsu SH. Biological performances of poly(ether)urethane-silver nanocomposites. Nanotechnology. 2007;18(47):475101–10.

    Article  Google Scholar 

  22. Petrie EM. Handbook of adhesives and sealants. 2nd ed. New York: McGraw-Hill; 2007.

    Google Scholar 

  23. Rwei S-P, Wang L. Synthesis and electrical, rheological and thermal characterization of conductive polyurethane. Colloid Polym Sci. 2007;285(12):1313–9.

    Article  CAS  Google Scholar 

  24. Erickson K. Thermal decomposition mechanisms common to polyurethane, epoxy, poly(diallyl phthalate), polycarbonate and poly(phenylene sulfide). J Therm Anal Calorim. 2007;89(2):427–40.

    Article  CAS  Google Scholar 

  25. Wang S, Liang R, Wang B, Zhang C. Dispersion and thermal conductivity of carbon nanotube composites. Carbon. 2009;47(1):53–7.

    Article  CAS  Google Scholar 

  26. Sun Y, Sheng P, Di C, Jiao F, Xu W, Qiu D, Zhu D. Organic thermoelectric materials and devices based on p- and n-type poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv Mater. 2012;24(7):932–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Holger Eichhorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iqbal, M., McCullough, M., Harris, A. et al. Thermal conductivity of polyurethane composites containing nanometer- and micrometer-sized silver particles. J Therm Anal Calorim 108, 933–938 (2012). https://doi.org/10.1007/s10973-012-2412-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2412-5

Keywords

Navigation