Skip to main content
Log in

Red phosphors in MgAl2Si2O8 doping with Mn4+, Gd3+ and Lu3+ and host-sensitized luminescence properties

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Mn4+ doped and Gd3+, Lu3+ co-doped MgAl2Si2O8-based phosphors were first of all synthesized by solid state reaction at about 1300.0 °C. They were characterized by thermogravimetry, differential thermal analysis, X-ray powder diffraction, photoluminescence, and scanning electron microscopy. The luminescence mechanism of the phosphors which showed broad red emission bands in the range of 610–715 nm and had a different maximum intensity when activated by UV illumination was discussed. Such a red emission can be attributed to the intrinsic 2E → 4A2 transitions of Mn4+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin Y, Tang Z, Zhang Z, Nan C. Luminescence of Eu2+ and Dy3+ activated R3MgSi2O8-based (R = Ca, Sr, Ba) phosphors. J Alloys Compd. 2003;348:76–9.

    Article  CAS  Google Scholar 

  2. Wang Y, Wang Z, Zhang P, Hong Z, Fan X, Qian G. Preparation of Eu2+ and Dy3+ co-activated CaAl2Si2O8-based phosphor and its optical properties. Mater Lett. 2004;5:3308–11.

    Article  Google Scholar 

  3. Łyszczek R. Hydrothermal synthesis, thermal and luminescent investigations of lanthanide(III) coordination polymers based on the 4,4′-oxybis(benzoate) ligand. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-1987-6.

    Google Scholar 

  4. Blasse G, Wanmaker WL, ter Vrugt JW, Bril A. Philips Res Rep. 1968;23:189.

    CAS  Google Scholar 

  5. Barry TL. Equilibria and Eu2+ luminescence of subsolidus phases bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2O8. J Electrochem Soc. 1968;115:733–8.

    Article  CAS  Google Scholar 

  6. Barry TL. Fluorescence of Eu2+-activated phases in binary alkaline earth orthosilicate systems. J Electrochem Soc. 1968;115:1181–4.

    Article  CAS  Google Scholar 

  7. Moore PB, Araki T. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am Miner. 1972;57:1355–74.

    CAS  Google Scholar 

  8. Yamazaki K, Nakabayashi H, Kotera Y, Ueno A. Fluorescence of Eu2+-activated binary alkaline earth silicate. J Electrochem Soc. 1986;133:657–60.

    Article  CAS  Google Scholar 

  9. Poort SHM, Reijnhoudt HM, Blasse G. Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row. J Alloys Compd. 1996;241:75–81.

    Article  CAS  Google Scholar 

  10. Huang L, Zhang X, Liu X. Studies on luminescence properties and crystallographic sites of Ce3+ in Ca3MgSi2O8. J. Alloys Compd. 2000;305:14–6.

    Article  CAS  Google Scholar 

  11. Ye S, Liu Z, Wang X, Wang J, Wang L, Jing J. Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M = Sr, Ba). J Lumin. 2009;129:50–4.

    Article  CAS  Google Scholar 

  12. Clabau F, Garcia A, Bonville P, Ganbeau D, Mercier T, Deniard P, et al. Fluorescence and phosphorescence properties of the low temperature forms of the MAl2Si2O8:Eu2+ (M = Ca, Sr, Ba) compounds. J Solid State Chem. 2008;181:1456–61.

    Article  CAS  Google Scholar 

  13. Ding Y, Zhang Y, Wang Z, Li W, Mao D, Han H. Photoluminescence of Eu single doped and Eu/Dy codoped Sr2Al2SiO7 phosphors with long persistence. J Lumin. 2009;129:294–9.

    Article  CAS  Google Scholar 

  14. Çırçır E, Ozpozan Kalaycioglu N. Host-sensitized phosphorescence of Mn4+, Eu3+ and Yb3+ in MgAl2Si2O8. J Therm Anal Calorim. 2011. doi:10.1007/s10973-011-2118-0.

  15. Murataa T, Tanoueb T, Iwasakib M, Morinagaa K, Hasec T. Fluorescence properties of Mn4+ in CaAl12O19 compounds as red emitting phosphor for white LED. J Lumin. 2005;114:207–12.

    Google Scholar 

  16. Zorenko Y, et al. Luminescence of Mn2+ ions in Tb3Al5O12. J Lumin. 2009;130:380–6.

    Article  Google Scholar 

  17. Donegan F, Glynn TJ, Imbusch GF, Remeika JP. Luminescence and fluorescence line narrowing studies of Y3Al5O12:Mn4+. J Lumin. 1986;36:93–100.

    Article  CAS  Google Scholar 

  18. Noginov MA, Loutts GB. Spectroscopic studies of Mn3+ and Mn2+ ions in YAlO3. J Opt Soc Am. 1999;16:475–83.

    CAS  Google Scholar 

  19. Ozpozan Kalaycioglu N, Çırçır E. Synthesis and phosphorescence properties of Mn4+, La3+ and Ho3+ in MgAl2Si2O8. J Alloys Compd. 2012;510:6–10.

    Article  Google Scholar 

  20. Shen WY, Pan ML, Lin J, Fang J. Host- Sensitized Luminescence of Dy3+ in Nanocrystalline β-Ga2O3 Prepared by a Pechini-Type Sol-Gel Process. J Electrochem Soc. 2005;152:2–H25.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Erciyes University EUBAP under project number FBD-09-804.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Çırçır.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalaycioglu, N.O., Çırçır, E. Red phosphors in MgAl2Si2O8 doping with Mn4+, Gd3+ and Lu3+ and host-sensitized luminescence properties. J Therm Anal Calorim 111, 273–277 (2013). https://doi.org/10.1007/s10973-012-2248-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-012-2248-z

Keywords

Navigation