Skip to main content
Log in

Kinetic study of decomposition of wheat distiller grains and steam gasification of the corresponding pyrolysis char

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal characteristics of wheat distiller grains (WDGs) and steam gasification kinetics of the corresponding pyrolysis char were studied by thermogravimetric analysis. The pyrolysis process of WDGs can be divided into three stages including the drying, devolatilization, and carbonation. The heating rate and final temperature are the most important factors influencing the WDGs decomposition. The ultimate mass loss increases with increasing final temperature while the mass loss rate and the characteristic temperature for the maximum reaction rate increase with the increasing heating rate. For the pyrolysis of WDGs, the average activation energy was calculated as 77.45 kJ mol−1 by Coats–Refern method. While for the steam gasification of the pyrolysis char, the shrinking-core model fits the gasification behavior better than the volumetric reaction one and the activation energy, and the pre-exponential factor were calculated to be 199.19 kJ mol−1 and 7.21 × 106 s−1, respectively, with the former model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Li CS, Suzuki K. Kinetic analyses of biomass tar pyrolysis using the distributed activation energy model by TG/DTA technique. J Therm Anal Calorim. 2009;98:261–6.

    Article  CAS  Google Scholar 

  2. Mothé CG, De Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.

    Article  Google Scholar 

  3. Nakanishi M, Ogi T, Fukuda Y. Thermogravimetric analysis in steam and oxygen with gas chromatograph mass spectrometry for basic study of biomass gasification. J Therm Anal Calorim. 2010;101:391–6.

    Article  CAS  Google Scholar 

  4. Luo ZY, Wang SR, Liao YF, Zhou JS, Gu YL, Cen KF. Research on biomass fast pyrolysis for liquid fuel. Biomass Bioenerg. 2003;26:455–62.

    Article  Google Scholar 

  5. Fjellerup J, Gjernes E, Hansen LK. Pyrolysis and combustion of pulverized wheat straw in a pressurized entrained flow reactor. Energy Fuels. 1996;10:649–51.

    Article  CAS  Google Scholar 

  6. Dall’Ora M, Jensen PA, Jensen AD. Suspension combustion of wood: influence of pyrolysis conditions on char yield, morphology, and reactivity. Energy Fuels. 2008;22:2955–62.

    Article  Google Scholar 

  7. Choct M. Enzymes for the feed industry: past, present and future. World Poultry Sci J. 2006;62:5–16.

    Article  Google Scholar 

  8. Roberson KD. Use of dried distillers’ grains with solubles in growing-finishing diets of Turkey hens. Int J Poultry Sci. 2003;2:389–93.

    Article  Google Scholar 

  9. Nyachoti CM, House JD, Slominski BA, Seddon IR. Energy and nutrient digestibilities in wheat dried distillers’ grains with solubles fed to growing pigs. J Sci Food Agr. 2005;85:2581–6.

    Article  CAS  Google Scholar 

  10. Kleinschmit DH, Schingoethe DJ, Kalscheur KF, Hippen AR. Evaluation of various sources of corn dried distillers grains plus solubles for lactating dairy cattle. J Dairy Sci. 2006;89:4784–94.

    Article  CAS  Google Scholar 

  11. Tavasoli A, Ahangari MG, Soni C, Dalai AK. Production of hydrogen and syngas via gasification of the corn and wheat dry distiller grains (DDGS) in a fixed-bed micro reactor. Fuel Process Technol. 2009;90:472–82.

    Article  CAS  Google Scholar 

  12. Agler MT, Garcia ML, Lee ES, Angenent LT. Thermophilic anaerobic digestion to increase the net energy balance of corn grain ethanol. Environ Sci Technol. 2008;42:6723–9.

    Article  CAS  Google Scholar 

  13. Kaparaju P, Serrano M, Angelidaki I. Optimization of biogas production from wheat straw stillage in UASB reactor. Appl Energ. 2010;87:3779–83.

    Article  CAS  Google Scholar 

  14. Kumar A, Eskridge K, Jones DD, Milford AH. Steam–air fluidized bed gasification of distillers grains: Effects of steam to biomass ratio, equivalence ratio and gasification temperature. Bioresour Technol. 2009;100:2062–8.

    Article  CAS  Google Scholar 

  15. Nowicki L, Antecka A, Bedyk T, Stolarek P, Stanisław Ledakowicz. The kinetics of gasification of char derived from sewage sludge. J Therm Anal Calorim. 2011;104:693–700.

    Article  CAS  Google Scholar 

  16. Ghaly A, Ergüdenler A. Determination of the kinetic of barley straw using thermogravimetric analysis. Appl Biochem Biotechnol. 1994;45–46:35–50.

    Article  Google Scholar 

  17. Miranda T, Esteban A, Rojas S, Montero I, Ruiz A. Combustion analysis of different olive residues. Int J Mol Sci. 2008;9:512–25.

    Article  CAS  Google Scholar 

  18. Cordero T, Rodriguez-maroto JM, Rodriguez JJ. Kinetics of thermal decomposition of wood and wood components. Thermochim Acta. 1990;164:135–44.

    Article  CAS  Google Scholar 

  19. Conesa JA, Caballero J, Marcilla A, Font R. Analysis of different kinetic models in the dynamic pyrolysis of cellulose. Thermochim Acta. 1995;254:175–92.

    Article  CAS  Google Scholar 

  20. Blasi CD, Branca C, Errico GD. Degradation characteristics of straw and washed straw. Thermochim Acta. 2000;364:133–42.

    Article  CAS  Google Scholar 

  21. Lapuerta M, Hernández JJ, Rodríguez J. Kinetics of devolatilisation of forestry wastes from thermogravimetric analysis. Biomass Bioenerg. 2004;27:385–91.

    Article  CAS  Google Scholar 

  22. Maiti S, Purakayastha S, Ghosh B. Thermal characterization of mustard straw and stalk in nitrogen at different heating rates. Fuel. 2007;86:1513–8.

    Article  CAS  Google Scholar 

  23. Valérie L, Dominique C, Eric L, Jean-Louis R. Kinetic study of forest fuels by TGA: Model-free kinetic approach for the prediction of phenomena. Thermochim Acta. 2010;497:1–6.

    Article  Google Scholar 

  24. Flynn JH. The Temperature Integral—its use and abuse. Thermochim Acta. 1997;300:83–92.

    Article  CAS  Google Scholar 

  25. Coats AW, Redrern JP. Kinetic parameters from thermogravimetric data. Nature. 1964;201:68–9.

    Article  CAS  Google Scholar 

  26. Adanez J, Dediego RF. Reactivity of lignite chars withCO2: influenee of the mine matter. Int Chem Eng. 1993;33:656–62.

    Google Scholar 

  27. Szekely J, Evans JW. A structural model for gas-solid reactions with a moving boundary. Chem Eng Sci. 1970;25:1091–107.

    Article  CAS  Google Scholar 

  28. Shafizadeh F, DeGroot W F. Thermal Uses and Properties of Carbohydrates and Lignins. New York: Academic press INC; 1976.

  29. Ivan M, Vahur O, Eric MS. Kinetics of the pyrolysis and combustion of olive oil solid waste. Ind Eng Chem Res. 1996;35:653–62.

    Article  Google Scholar 

  30. Jauhiainen J, Conesa JA, Font R, Mart′ın-Gullón I. Kinetic modeling of biomass pyrolysis. J Anal Appl Pyrol. 2004;72:9–15.

    Article  CAS  Google Scholar 

  31. Varhegyi G, Antal MJ, Jakab E, Szabo P. Pyrolysis behavior and kinetics of biomass derived materials. J Anal Appl Pyrol. 1997;42:73–87.

    Article  CAS  Google Scholar 

  32. Fisher T, Hajaligol M, Waymack B, Kellogg D. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. J Anal Appl Pyrol. 2002;62:331–49.

    Article  CAS  Google Scholar 

  33. Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Thermogravimetric analysis and devolatilization kinetics of wood. Fuel. 2003;82:1949–60.

    Article  CAS  Google Scholar 

  34. Seebauer V, Petek J, Staudinger G. Effects of particle size, heating rate and pressure on measurement of pyrolysis kinetics by thermogravimetric analysis. Fuel. 1997;76:1277–82.

    Article  CAS  Google Scholar 

  35. Senneca O. Kinetics of pyrolysis, combustion and gasification of three biomass fuels. Fuel Process Technol. 2007;88:87–97.

    Article  CAS  Google Scholar 

  36. Arendt P, Van Heek K. Comparative investigations of coal pyrolysis under inert gas and H2 at low and high heating rates and pressures up to 10 Mpa. Fuel. 1981;60:779.

    Article  CAS  Google Scholar 

  37. Franco C, Pinto F, Gulyurtlu I, Cabrita I. The study of reactions influencing the biomass steam gasification process. Fuel. 2003;82:835–42.

    Article  CAS  Google Scholar 

  38. Dupont C, Boissonnet G, Seiler J-M, Gauthier P, Schweich D. Study about the kinetic processes of biomass steam gasification. Fuel. 2007;86:32–40.

    Article  CAS  Google Scholar 

  39. Sakaguchi M, Watkinson AP, Ellis N. Steam gasification of bio-oil and bio-oil/char slurry in a fluidized bed reactor. Energy Fuels. 2010;24:5181–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Research Program of China(Program no. 20776158)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiying Xu or Guogang Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, G., Fang, B. & Sun, G. Kinetic study of decomposition of wheat distiller grains and steam gasification of the corresponding pyrolysis char. J Therm Anal Calorim 108, 109–117 (2012). https://doi.org/10.1007/s10973-011-1695-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1695-2

Keywords

Navigation