Skip to main content
Log in

Evaluation of organic molecules originated during composting process

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The composting process using sugarcane bagasse, animal manure, and urea as source of organic matter, microorganism, and nitrogen, respectively, were evaluated regarding the thermal behavior considering the maturation period: 0 (raw), 15, 22, 30, and 60 days. Thermogravimetric and differential thermal analysis curves were obtained in a synthetic air atmosphere and heating rate of 10 °C min−1 in the range of 30–600 °C. The raw compost showed 80% organic matter, which was reduced up to 58% to 60 days compost. Two main mass losses were verified, corresponding to characteristics exothermic peak in differential thermal analysis curves depending on the maturation period. The variation in organic composition was evaluated by Fourier transform infrared spectroscopy verifying the structures (lignin, cellulose, and hemicelluloses) changes with composting process, and the gas chromatography–mass spectrometry was used to identify substance soluble in hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oliveira ER. de. Organizadores de plantadores de cana da região centro-sul do Brasil. Fiscalização de laboratórios de análise da qualidade da cana-de açúcar. 2006.

  2. Reynol F. Bagaço de Qualidade. In: Agência de notícias da Fundação de amparo à Pesquisa do Estado de São Paulo. 2009. http://www.agencia.fapesp.br/materia/11533/especiais/bagaco-de-qualidade.htm. Accessed 09 March 2010.

  3. Mothé CG, de Miranda IC. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim. 2009;97:661–5.

    Article  Google Scholar 

  4. Brossard LE, Cortez, LA, Braunbech OA et al. Sistema de alimentação de biomassa polidispersa. In: Proceedings of the 3. Encontro de Energia no Meio Rural. 2003. http://www.proceedings.scielo.br/scielo.php?script=sci_arttext&pid=MSC0000000022000000200019&lng=en&nrm=iso. Accessed 13 March 2008.

  5. Katyal S, Thambimuthu K, Valix M. Carbonisation of bagasse in a fixed bed reactor: influence of process variables on char yield and characteristics. Renew Energy. 2003;28:713–25.

    Article  CAS  Google Scholar 

  6. Pietro M, Castaldi P. Thermal analysis for evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta. 2004;413:209–14.

    Article  CAS  Google Scholar 

  7. Almeida S, Lima EN, Crespi MS, Ribeiro CA, Schalch V. Kinetic studies of urban solid and leachate from sanitary landfill. J Therm Anal Calorim. 2009;97:529–33.

    Article  CAS  Google Scholar 

  8. Silva AR, Crespi MS, Ribeiro CA, Oliveira SC, Silva MRS. Kinetic of thermal degradation of residues from different kinds of composting. J Therm Anal Calorim. 2004;73:401–9.

    Article  Google Scholar 

  9. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the “Gold Book”). Compiled by McNaught AD, Wilkinson A. Blackwell Scientific Publications, Oxford (1997) XML on-line corrected version: http://goldbook.iupac.org (2006-) created by Nic M, Jirat J, Kosata B; updates compiled by Jenkins A. ISBN 0-9678550-9-8. doi:10.1351/goldbook. doi of this term: doi:10.1351/goldbook.C01265.

  10. ASTM E 1756-01. Standard method for determination of total solids in biomass. 2001;11.

  11. Kiehl EJ. Manual de compostagem: maturação e qualidade do composto. 3rd ed. Piracicaba: edição do autor; 2002.

  12. Harper SHT, Lynch JM. The chemical components and decomposition of wheat straw leaves, internodes and nodes. J Sci Food Agric. 1981;32:1057–62.

    Article  CAS  Google Scholar 

  13. Sánchez-Monedero MA, Roig A, Cegarra J, Bernal MP. Relationships between water-soluble carbohydrate and phenol fractiona and the humification indices of different organic wastes during composting. Bioresour Technol. 1999;70:193–201.

    Article  Google Scholar 

  14. Boopathy R, Beary T, Templet PJ. Microbial decomposition of post-harvest sugarcane residue. Bioresour Technol. 2001;79:29–33.

    Article  CAS  Google Scholar 

  15. Bernabé GA. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2008. p. 97.

    Google Scholar 

  16. Ernesto VART. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2009. p. 70.

    Google Scholar 

  17. Saliba EOS, Rodriguez NM, Morais SAL, Piló-Veloso D. Ligninas: métodos de obtenção e caracterização química. Ciência Rural. 2001;31:917–28.

    Article  Google Scholar 

  18. Baddi GA, et al. Chemical and spectroscopic analyses of organic matter transformations during composting of olive mill wastes. Int Biodeterior Biodegrad. 2004;54:39–44.

    Article  Google Scholar 

  19. Rodrigues Filho G, Assunção RMN, Vieira JG, Meireles CS, Cerqueira DA, Barud HS, Ribeiro SJL, Messadeq Y. Characterization of methylcellulose produced from sugar cane bagasse cellulose: crystallinity and thermal properties. Polym Degrad Stab. 2007;92:205–10.

    Article  CAS  Google Scholar 

  20. Schalch V. Dissertação de Mestrado em Hidráulica e Saneamento, Escola de Engenharia de São Carlos. São Paulo: Universidade de São Paulo; 1984. p. 107.

    Google Scholar 

  21. Scagliusi SM, Grosseli D, Ruppenthal TE, Deon, AA. Estudos preliminares sobre o efeito da cafeína na duplicação cromossômica em plantas haplóides de cerrados (Hordeum vulgares). Documentos on line, Embrapa—Empresa Brasileira de Pesquisa Agropecuária. 2009;109: 1–4.

  22. Hammond B, Katzenellenboggen BS, Krauthammer N, Mccnnel J. Estrogenic activity of the insecticide chlordecone (kepone) and interaction with uterine estrogen receptors. Med Sci. 1979;76:6641.

    CAS  Google Scholar 

  23. Barbosa LCA. Espectroscopia no Infravermelho na caracterização de compostos orgânicos. Viçosa: UFV; 2007. p. 189.

    Google Scholar 

  24. Barud HS. Dissertação de Mestrado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2006. p. 54.

    Google Scholar 

  25. Sun RC, Sun XF, Fowler P, Tomkinson J. Structural and physic-chemical characterization of lignins solubilized during alkaline peroxide treatment of barley straw. Eur Polym J. 2002;38:1399–407.

    Article  CAS  Google Scholar 

  26. Xiao B, Sun XF, Sun R. Chemical, structural, and thermal characterizations of alkali-soluble lignins and hemicelluloses, and cellulose form maize stem, rye straw, and rice straw. Polym Degrad Stab. 2001;74:307–19.

    Article  CAS  Google Scholar 

  27. Rohella RS, Sahoo N, Paul SC, Choudhury S, Chakravortty V. Thermal studies on isolated and purified lignin. Thermochim Acta. 1996;287:131–8.

    Article  CAS  Google Scholar 

  28. Almeida S. Tese de Doutorado em Química, Instituto de Química de Araraquara. São Paulo: Universidade Estadual Paulista; 2007. p. 77.

    Google Scholar 

  29. Smidt E, Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Manag. 2007;27:268–76.

    Article  CAS  Google Scholar 

  30. Provenzano MR, Senesi N, Miikki V. Characterization of composts and humic acids from pulp and paper mill biosludges by DSC in association with FT-IR spectroscopy. J Therm Anal Calorim. 1998;52:1037–46.

    Article  CAS  Google Scholar 

  31. Silverstein RM. Identificação espectrofotométrica de compostos orgânicos. 3rd ed. Rio de Janeiro: Guanabara Dois; 1979. p. 299.

    Google Scholar 

Download references

Acknowledgements

The autors are to grateful Instituto de Química—UNESP de Araraquara/SP, CAPES (Coordenação de Aperfeiçoamento Pessoal de Nível Superior), CNPQ (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FACTE (Fundação de Apoio à Ciência, Tecnologia e Educação) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giseli Aparecida Bernabé.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernabé, G.A., Almeida, S., Ribeiro, C.A. et al. Evaluation of organic molecules originated during composting process. J Therm Anal Calorim 106, 773–778 (2011). https://doi.org/10.1007/s10973-011-1420-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1420-1

Keywords

Navigation