Skip to main content
Log in

Thermal study of unaltered and altered dolomitic rock samples from ancient monuments

The case of Villarcayo de Merindad de Castilla la Vieja (Burgos, Spain)

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this study, the decomposition behaviour of unaltered and altered dolomitic rock samples used in Cultural Heritage buildings was studied by simultaneous TG–DTA experiments at different atmospheres, X-ray diffraction in a high-temperature chamber, and evolved gas analysis. The components of dolomite rock samples and hydrated calcium oxalate formed during the alteration processes of the rocks were characterized, and the decomposition mechanisms of these components were determined. The TG–DTA experiments carried out at CO2 atmosphere were used to determine the carbonate compounds in the rock samples. The TG–DTA study characterized the presence of organic compounds formed during the biological degradation of the rock samples, possibly responsible of the hydrated calcium oxalate formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Maniatis Y, Herz N, Basiakos Y, editors. The study of marble and other stones used in antiquity. Los Angeles: J.G. Publications; 1995.

    Google Scholar 

  2. Iwafuchi K, Watenabe C, Otsuka R. Thermal decomposition of ferromanganoan dolomite. Thermochim Acta. 1983;66:105–25.

    Article  CAS  Google Scholar 

  3. Barcina LM, Espina A, Suarez M, Garcia JR, Rodriguez J. Characterization of monumental carbonate stones by thermal analysis (TG, DTG and DSC). Thermochim Acta. 1997;290:181–9.

    Article  CAS  Google Scholar 

  4. McCauley RA, Johnson LA. Decrepitation and thermal decomposition of dolomite. Thermochim Acta. 1991;185:271–82.

    Article  CAS  Google Scholar 

  5. McIntosh RM, Sharp JH, Wilburn FW. The thermal decomposition of dolomite. Thermochim Acta. 1990;165:281–96.

    Article  CAS  Google Scholar 

  6. Otsuka R. Recent studies on the decomposition of the dolomite group by thermal analysis. Thermochim Acta. 1986;100:69–80.

    Article  CAS  Google Scholar 

  7. Ozao R, Ochiai M, Yamazaki A, Otsuka R. Thermal analysis of ground dolomites. Thermochim Acta. 1991;183:183–98.

    Article  CAS  Google Scholar 

  8. Stepkowska ET, Perez-Rodriguez JL, Sayagues MJ, Martinez-Blanes JM. Calcite, vaterite and aragonite forming on cement hydration from liquid and gaseous phase. J Therm Anal Calorim. 2003;73:247–69.

    Article  CAS  Google Scholar 

  9. Shoval S, Gaft M, Beck P, Krish V. Thermal-behavior of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. J Therm Anal Calorim. 1993;40:263–73.

    Article  CAS  Google Scholar 

  10. Shoval S. Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermochim Acta. 1988;135:243–52.

    Article  CAS  Google Scholar 

  11. Gunasekaran S, Anbalagan G. Spectroscopy study of phase transitions in dolomite natural. J Raman Spectrosc. 2007;38:846–52.

    Article  CAS  Google Scholar 

  12. Samtani M, Dollimore D, Alexander K. Thermal decomposition of dolomite in an atmosphere of carbon dioxide, the effect of procedural variables in thermal analysis. J Therm Anal Calorim. 2001;65:93–101.

    Article  CAS  Google Scholar 

  13. Avila I, Crnkovic PM, Milioli FE. Thermogravimetric study of the effect of temperature and atmosphere on sulfur dioxide absorption by limestone. Quim Nova. 2006;29:1244–9.

    CAS  Google Scholar 

  14. Maitra S, Chodhury A, Das HD, Pramanik MJ. Effect of compaction on the kinetics of thermal decomposition of dolomite under non-isothermal condition. J Mater Sci. 2005;40:4749–51.

    Article  CAS  Google Scholar 

  15. Webb TL, Krüger JE. Carbonates. In: Mackenzie RC, editor. Differential thermal analysis, vol. 1. New York: Academic Press; 1970.

    Google Scholar 

  16. Perez-Rodriguez JL, Duran A, Sanchez-Jimenez PE, Franquelo ML, Perejon A, Pascual-Cosp J, Perez-Maqueda LA. Study of the dehydroxylation-rehydroxylation of pyrophyllite. J Am Ceram Soc. 2010;93:2392–8.

    Article  CAS  Google Scholar 

  17. Franco F, Perez-Maqueda LA, Perez-Rodriguez JL. The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochim Acta. 2003;404:71–9.

    Article  CAS  Google Scholar 

  18. Perez-Maqueda LA, Balek V, Poyato J, Pérez-Rodriguez JL, Subrt J, Bountsewa IM, Malek Z. Study of natural and ion exchanged vermiculite by emanation thermal analysis, TG, DTA and XRD. J Therm Anal Calorim. 2003;71:715–26.

    Article  CAS  Google Scholar 

  19. Perez-Maqueda LA, Blanes JM, Pascual J, Perez-Rodriguez JL. The influence of sonication on the thermal behaviour of muscovite and biotite. J Am Ceram Soc. 2004;24:2793–801.

    Article  CAS  Google Scholar 

  20. Bradley WF, Burst JF, Graf DL. Crystal chemistry and differential thermal effects of dolomite. Am Miner. 1953;38:207–17.

    CAS  Google Scholar 

  21. Maszalek M. Applications of optical microscopy and scanning electron microscopy to the study of stone weathering: a Cracow case study. Int J Archit Herit. 2008;2:83–92.

    Article  Google Scholar 

  22. Toniolo L, Zerbi CM, Bugini R. Black layers on historical architecture. Environ Sci Pollut Res. 2009;16:218–26.

    Article  CAS  Google Scholar 

  23. Adorni E, Venturelli G. Mortars and stones of the Damascus Citadel (Syria). Int J Archit Herit. 2010;4:337–50.

    Article  Google Scholar 

  24. Garcia-Valles M, Urzi C, De Leo F, Salomone P, Vendrell-Sanz M. Biological weathering and mineral deposits of the Belevi marble quarry (Ephesis, Turkey). Int Biodeterior Biodegrad. 2000;46:221–7.

    Article  Google Scholar 

  25. Del Monte M, Sabioni C, Sappia G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Total Environ. 1987;67:17–39.

    Article  CAS  Google Scholar 

  26. Chen J, Blume HP, Beyer L. Weathering of rocks induced by lichen colonization—a review. Catena. 2000;39:121–46.

    Article  CAS  Google Scholar 

  27. Lazzarini L, Borrelli E, Bouabdelli M, Antonelli F. Insight into the conservation problems of the stone building “Bab Agnaou”, a XII century monumental gate in Marrakech (Morocco). J Cult Herit. 2007;8:315–22.

    Article  Google Scholar 

  28. Kolo K, Claeys Ph. In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences. 2005;2:277–93.

    Article  CAS  Google Scholar 

  29. Frost RL, Weier ML. Thermal treatment of weddellite–a Raman and infrared emission spectroscopic study. Thermochim Acta. 2003;406:221–32.

    Article  CAS  Google Scholar 

  30. Campanella L, Cardarelli E, Curini R, D’ascenzo G, Tomasetti M. Thermogravimetric analysis of human renal calculi sampled in 19th century patients: discussion on the basis of their alimentary customs. J Therm Anal Calorim. 1992;38:2707–17.

    Article  CAS  Google Scholar 

  31. Carrasco F. Kinetic-study of the thermal decomposition of monohydrate calcium oxalate by thermogravimetric analysis. Afinidad. 1991;48:19–24.

    CAS  Google Scholar 

  32. Frost RL, Weier ML. Thermal treatment of whewellite: a thermal study and Raman spectroscopy study. Thermochim Acta. 2004;409:79–85.

    Article  CAS  Google Scholar 

  33. Kohutova A, Honcova P, Podzemna V, Bezdicka P, Vecernikova E, Louda M, Seidel J. Thermal analysis of kidney stones and their characterization. J Therm Anal Calorim. 2010;101:695–9.

    Article  CAS  Google Scholar 

  34. Gurrrieri S, Siracusa G, Cali R. Thermal decomposition of CaC2O4H2O—determination of kinetic parameters by DTG and DTA. J Therm Anal Calorim. 1974;6:293–8.

    Article  Google Scholar 

  35. Mu J, Perlmutter DD. Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formats and hydroxides. Thermochim Acta. 1981;44:207–18.

    Article  Google Scholar 

  36. Lombardi G, Santarelli ML. Multi-instrumental analysis of asphalts of archaeological interest. J Therm Anal Calorim. 2009;96:541–6.

    Article  CAS  Google Scholar 

  37. Budrugeac P, Emandi A. The use of thermal analysis methods for conservation state determination of historical and/or cultural objects manufactured from lime tree wood. J Therm Anal Calorim. 2010;101:881–6.

    Article  CAS  Google Scholar 

  38. Ion RM, Ion ML, Fierascu RC, Serban S, Dumitriu I, Radovici C, Bauman I, Cosulet S, Niculescu VIR. Thermal analysis of Romanian ancient ceramics. J Therm Anal Calorim. 2010;102:393–8.

    Article  CAS  Google Scholar 

  39. Franquelo ML, Robador MD, Ramírez-Valle V, Durán A, Jiménez de Haro MC, Pérez-Rodríguez JL. Roman ceramics of hydraulic mortars used to build the Mithraeum House of Merida (Spain). J Therm Anal Calorim. 2008;92:331–5.

    Article  CAS  Google Scholar 

  40. Odlyha M, Wang Q, Foster GM, de Groot J, Horton M, Bozec L. Thermal analysis of model and historic tapestries. J Therm Anal Calorim. 2005;82:627–36.

    Article  CAS  Google Scholar 

  41. Moropoulou A, Bakolas A, Bisbikou K. Investigation of the technology of historic mortars. J Cult Herit. 2000;1:45–58.

    Article  Google Scholar 

  42. Genestar C, Pons C, Mas A. Analytical characterisation of ancient mortars from the archaeological Roman city of Pollentia (Balearic Islands, Spain). Anal Chim Acta. 2006;557:373–9.

    Article  CAS  Google Scholar 

  43. Vágvölgy V, Frost RL, Hales M, Locke A, Kristof J, Horváth E. Controlled rate thermal analysis of hydromagnesite. J Therm Anal Calorim. 2008;92:893–7.

    Article  Google Scholar 

  44. Beck CW. Differential thermal analysis curves of carbonate minerals. Am Mineral. 1950;35:985–1013.

    CAS  Google Scholar 

  45. Duran A, Perez-Maqueda LA, Poyato J, Perez-Rodriguez JL. A thermal study approach to roman age wall paintings mortars. J Therm Anal Calorim. 2010;99:803–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Prof. M. D. Robador (University of Seville) for providing the samples. A.D. is indebted to the CSIC (MICINN) of Spain for the “Junta de Ampliacion de Estudios” contract (JAE Doc 088). We thank M. C. Jimenez de Haro for her help in SEM measurements. Financial support from projects TEP-03002 from Junta de Andalucía and MAT 2008-06619/MAT from the Spanish Ministerio de Ciencia e Innovación is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Perez-Rodriguez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez-Rodriguez, J.L., Duran, A. & Perez-Maqueda, L.A. Thermal study of unaltered and altered dolomitic rock samples from ancient monuments. J Therm Anal Calorim 104, 467–474 (2011). https://doi.org/10.1007/s10973-011-1348-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-011-1348-5

Keywords

Navigation