Skip to main content
Log in

Quercetin-PVP K25 solid dispersions

Preparation, thermal characterization and antioxidant activity

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Quercetin is a flavonoid very well studied and has already entered clinical trials emerging as prospective anticancer drug candidate. In addition, quercetin has being reported to its free-radical scavenging activity and suggests potential uses for the prevention and treatment of pathologies as atherosclerosis, chronic inflammation, and others. However, quercetin is sparingly soluble in water, which may be responsible for its limited absorption upon oral administration. The solid dispersion of quercetin with polyvinylpyrrolidone Kollidon® 25 (PVP K25) suggests an interesting way to increase quercetin solubility, antioxidant activity, and consequently bioavailability. Then, the purpose of this study was to prepare solid dispersions of quercetin with PVP K25 and evaluate their thermal characterization, antioxidant activity and quercetin improvement solubility. For this purpose, quercetin-PVP K25 solutions were dried and quercetin-PVP K25 solids were obtained. The formation of quercetin-PVP K25 solid dispersion was evaluated by solubility studies, powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetry (TG), and antioxidant activity. It was observed that PVP K25 was able to provide quercetin clear aqueous solutions and that quercetin solubility was increased in a PVP K25 concentration dependent manner, improving solubility even 436-fold the pure quercetin. The results obtained with XRD, FT-IR, DSC, and TG demonstrated possible quercetin-PVP K25 solid dispersion formation. Besides, the antioxidant activity of the quercetin-PVP K25 solid dispersions dissolved in aqueous solution and pure quercetin dissolved in methanol showed IC50 value of 0.61 ± 0.03 and 1.00 ± 0.02 μg/mL, respectively, demonstrating that the solid dispersions presented a significant increase in antioxidant activity (P < 0.05). Putting results together, it was possible to conclude there was the formation of quercetin-PVP K25 solid dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Marquelle-Oliveira F, Fonseca YM, Georgetti SR, Vicentini FTMC, Bronzati V, Fonseca MJV. Evaluation of the antioxidant activity as an additional parameter to attain the functional quality of natural extracts. Latin Am J Pharm. 2008;27:325–32.

    Google Scholar 

  2. Singh K, Marangoni DG. Microcalorimetric determination of effect of the antioxidant (Quercetin) on polymer/surfactant interactions. J Therm Anal Calorim. doi:10.1007/s10973-010-0864-z.

  3. Kanaze FI, Kokkalou E, Niopas I, Georgarakis M, Stergiou A, Bikiaris D. Thermal analysis study of flavonoid solid dispersions having enhanced solubility. J Therm Anal Calorim. 2006;83:283–90.

    Article  CAS  Google Scholar 

  4. Rice-Evans CA, Miller NJ, Paganga G. Structure antioxidant activity relationship of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933–56.

    Article  CAS  Google Scholar 

  5. López-Revuelta A, Sánchez-Gallego JI, Hernández-Hernández A, Sánchez-Yagüe J, Llanillo M. Membrane cholesterol contents influence the protective effects of quercetin and rutin in erythrocytes damaged by oxidative stress. Chem Biol Interact. 2006;161:79–91.

    Article  Google Scholar 

  6. Cook NC, Samman S. Flavonoids, chemistry, metabolism, cardioprotective effects and dietary sources. J Nutr Biochem. 1996;7:66–76.

    Article  CAS  Google Scholar 

  7. Bors W, Heller W, Michel C, Saran M. Flavonoids as antioxidants: determination of radical-scavenging efficiencies. Methods Enzymol. 1990;186:343–55.

    Article  CAS  Google Scholar 

  8. Lu J, Zheng Y, Luo L, Wu D, Sun D, Feng Y. Quercetin reverses d-galactose induced neurotoxicity in mouse brain. Behav Brain Res. 2006;171:251–60.

    Article  CAS  Google Scholar 

  9. Budavari S, O’Neil MJ, Smith A, Heckelman PE, Kinneary JF. The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 12th ed ed. Whitehouse Station: Merck & Co; 1996.

    Google Scholar 

  10. Indap MA, Bhosle SC, Tayade PT, Vavia PR. Evaluation of toxicity and antitumour effects of a hydroxypropyl β-cyclodextrin inclusion complex of quercetin. Indian J Pharm Sci. 2002;64:349–53.

    CAS  Google Scholar 

  11. Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi N Burman AC. Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bioavailability. Med Chem. 2009;9:138–61.

    CAS  Google Scholar 

  12. Yuan ZP, Chen LJ, Fan LY, Tang MH, Yang GL, Yang HS, Du XB, Wang GQ, Yao WX, Zhao QM, Ye B, Wang R, Diao P, Zhang W, Wu HB, Zhao X, Wei YQ. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006;12:3193–9.

    Article  CAS  Google Scholar 

  13. Croft KD. The chemistry and biological effects of flavonoids and phenolic acids. Ann NY Acad Sci. 1998;854:435–42.

    Article  CAS  Google Scholar 

  14. Jullian C, Moyano L, Yañez C, Azar-Olea C. Complexation of quercetin with three kinds of cyclodextrins: an antioxidant study. Spectrochimica Acta Part A Mol Biomol Spectrosc. 2007;67:230–4.

    Article  Google Scholar 

  15. Gugler R, Leschik M, Dengler HJ. Disposition of quercetin in man after single oral and intravenous doses. Eur J Clin Pharm. 1975;9:223–34.

    Article  Google Scholar 

  16. Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm. 2008;346:160–8.

    Article  CAS  Google Scholar 

  17. Papageorgiou GZ, Docoslis A, Georgarakis M, Bikiaris D. The effect of the physical state on the drug dissolution rate: miscibility studies of nimodipine with PVP. J Therm Anal Calorim. 2009;95:903–15.

    Article  CAS  Google Scholar 

  18. Karavas E, Georgarakis E, Bikiaris D. Adjusting drug release by using miscible polymer blends as effective drug carries. J Therm Anal Calorim. 2006;84:125–33.

    Article  CAS  Google Scholar 

  19. Friedrich H, Fussnegger B, Kolter K, Bodmeier R. Dissolution rate improvement of poorly water-soluble drugs obtained by adsorbing solutions of drugs in hydrophilic solvents onto high surface area carriers. Eur J Pharm Biopharm. 2006;62:171–7.

    Article  CAS  Google Scholar 

  20. Ammar HO, Ghorab M, El-Nahhas SA, Makram TS. Improvement of the biological performance of oral anticoagulant drugs.1. Warfarin. Pharmazie. 1997;52:627–31.

    CAS  Google Scholar 

  21. El-Arini SK, Leuenberger H. Dissolution properties of praziquantel-PVP systems. Pharm Acta Helvetiae. 1998;73:89–94.

    Article  CAS  Google Scholar 

  22. Dowd LE. Spectrophotometric determination of quercetin. Anal Chem. 1959;31:1184–7.

    Article  CAS  Google Scholar 

  23. Jay M, Gonnet JF, Wollenwebwer E, Voirin B. Sur lánalyse qualitative des aglycones flavoniques dans une optique chimiotaxinomique. Phytochem. 1975;14:1605–12.

    Article  CAS  Google Scholar 

  24. Brand-Williams W, Cuvelier ME, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol. 1995;28:25–30.

    Article  CAS  Google Scholar 

  25. Zhu J, Yang ZG, Chen XM, Sun JB, Awuti G, Zhang X, Zhang Q. Preparation and physicochemical characterization of solid dispersion of quercetin and polyvinylpyrrolidone. J Chin Pham Sci. 2007;16:51–6.

    CAS  Google Scholar 

  26. Pralhad T, Rajendrakumar K. Study of freeze-dried quercetin–cyclodextrin binary systems by DSC, FT-IR, X-ray diffraction and SEM analysis. J Pharm Biomed Anal. 2004;34:333–9.

    Article  CAS  Google Scholar 

  27. Zheng Y, Chow AHL. Production and characterization of a spray-dried hydroxypropyl-beta-cyclodextrin quercetin complex. Drug Dev Ind Pharm. 2009;35:727–34.

    Article  CAS  Google Scholar 

  28. Marin MT, Margarit MV, Salcedo GE. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. II Farmaco. 2002;57:723–7.

    Article  CAS  Google Scholar 

  29. Rosenkrantz H, Skogstron P. Characteristic infrared absorption bands of steroids with reduced ring A. I. tetrahydro compounds. J Am Chem Soc. 1955;77:2237–41.

    Article  CAS  Google Scholar 

  30. Costa EM, Filho JMB, Nascimento TG, Macêdo RO. Thermal characterization of the quercetin and rutin flavonoids. Thermochimica Acta. 2002;392:79–84.

    Article  Google Scholar 

  31. Razzak MT, Zainuddin E, Dewi SP, Lely H, Taty E, Sukirno. The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat Phys Chem. 1999;55:153–65.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to APIS FLORA (Apis Flora Indl. Coml. Ltda.), CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), CNPQ-Brasil (Conselho Nacional de Desenvolvimento Científico e Tecnológico) and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rita de Mello Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Mello Costa, A.R., Marquiafável, F.S., de Oliveira Lima Leite Vaz, M.M. et al. Quercetin-PVP K25 solid dispersions. J Therm Anal Calorim 104, 273–278 (2011). https://doi.org/10.1007/s10973-010-1083-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-1083-3

Keywords

Navigation