Skip to main content
Log in

On the goethite to hematite phase transformation

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This study deals with some microstructural and crystallographic aspects of the thermally induced transformation of goethite (α-FeOOH) into hematite (α-Fe2O3), occurring at about 300 °C. Powder specimens of goethite have been annealed in air at different temperatures, ranging from 200 °C up to 1,000 °C. The resulting products have been analyzed for a complete characterization of the changes brought about by the thermal treatments, using a multianalytical approach, based on: thermogravimetry, differential thermal analysis, transmission electron microscopy, Raman spectroscopy, and X-ray diffraction. At lower temperatures, the transition to hematite produces no important changes in size and shape of the original goethite grains. Recrystallization, and partial sintering, occurs only at temperatures in excess of 800 °C. The relevant evolution of pores present in both phases has been also considered, as it may provide important indications on the actual formation mechanism of hematite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Trassati S. Transition metal oxides: versatile materials for electrocatalysis. In: Lipkowski J, Ross P, editors. Electrochemistry of novel materials, vol. III. Weinheim, Germany: VCH Verlagsgesellschaft; 1994. p. 207.

    Google Scholar 

  2. Busca G, Daturi M, Finocchio E, Lorenzelli V, Ramis G, Willey RJ. Transition metal mixed oxides as combustion catalysts: preparation, characterization and activity mechanisms. Catal Today. 1997;33:239–49.

    Article  CAS  Google Scholar 

  3. Cornell RM, Schwertmann U. The iron oxides. Weinheim, Germany: VCH Verlagsgesellschaft; 1996.

    Google Scholar 

  4. Marean CW, Bar-Matthews M, Bernatchez J, Fisher E, Goldberg P, Herries AIR, et al. Early human use of marine resources and pigment in South Africa during the Middle Pleistocene. Nature. 2008;449:905–8.

    Article  Google Scholar 

  5. Colombo L. Il colore degli antichi. 2nd ed. Florence: Nardini; 2003.

    Google Scholar 

  6. Ruan HD, Frost RL, Kloprogge JT, Duong L. Infrared spectroscopy of goethite dehydroxylation: III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite. Spectrochim Acta A. 2002;58:967–81.

    Article  CAS  Google Scholar 

  7. Ruan HD, Frost RL, Kloprogge JT, Duong L. Infrared spectroscopy of goethite dehydroxylation. II. Effect of aluminium substitution on the behaviour of hydroxyl units. Spectrochim Acta A. 2002;58:479–91.

    Article  CAS  Google Scholar 

  8. Lutterotti L, Matthies S, Wenk HR, Goodwin M. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J Appl Phys. 1997;81:594–600.

    Article  CAS  Google Scholar 

  9. Lonardelli I, Wenk HR, Lutterotti L, Goodwin M. Texture analysis from synchrotron diffraction images with the Rietveld method: dinosaur tendon and salmon scale. J Synchrotron Radiat. 2005;12:354–60.

    Article  CAS  Google Scholar 

  10. Labar JL. Consistent indexing of a (set of) single crystal SAED pattern(s) with the process diffraction program. Ultramicroscopy. 2005;103:237–49.

    Article  CAS  Google Scholar 

  11. Ruan HD, Frost RL, Kloprogge JT. The behavior of hydroxyl units of synthetic goethite and its dehydroxylated product hematite. Spectrochim Acta A. 2001;57:2575–86.

    Article  CAS  Google Scholar 

  12. Gualtieri AF, Venturelli P. In situ study of the goethite-hematite phase transformation by real time synchrotron powder diffraction. Am Mineral. 1999;84:895–904.

    CAS  Google Scholar 

  13. Hongley F, Song B, Li Q. Thermal behavior of goethite during transformation to hematite. Mater Chem Phys. 2006;98:148–53.

    Article  Google Scholar 

  14. Walter D, Buxbaum D, Laqua W. The mechanism of the thermal transformation from goethite to hematite. J Therm Anal Calorim. 2001;63:733–48.

    Article  CAS  Google Scholar 

  15. Saito T. The anomalous thermal expansion of hematite at a high temperature. Bull Chem Soc Jpn. 1965;38:2008–9.

    Article  CAS  Google Scholar 

  16. Ocaña M, Morales MP, Serna CJ. The growth mechanism of α-Fe2O3 ellipsoidal particles in solution. J Colloid Interface Sci. 1995;171:85–91.

    Article  Google Scholar 

  17. Bersani D, Lottici P, Montenero A. Micro-Raman investigation of iron oxide films and powders produced by sol-gel syntheses. J Raman Spectrosc. 1999;30:355–60.

    Article  CAS  Google Scholar 

  18. Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact Mater. 2007;53:1–56.

    Article  CAS  Google Scholar 

  19. Housecroft C, Sharpe AG. Inorganic chemistry. Harlow: Prentice Hall; 2007.

    Google Scholar 

  20. Massey MJ, Baier U, Merlin R, Weber WH. Effects of pressure and isotopic-substitution on the Raman-spectrum of alpha-Fe2O3—identification of 2-magnon scattering. Phys Rev B. 1990;41:7822–7.

    Article  CAS  Google Scholar 

  21. Pelino M, Toro L, Petroni M, Florindi A, Cantalini C. Study of the kinetics of decomposition of goethite in vacuo and pore structure of product particles. J Mater Sci. 1989;24:409–12.

    Article  CAS  Google Scholar 

  22. Rendon JL, Cornejo J, De Arambarri P, Serna J. Grinding-induced effects on goethite (α-FeOOH). J Colloid Interface Sci. 1983;92:508–16.

    Article  CAS  Google Scholar 

  23. de Faria DLA, Lopes FN. Heated goethite and natural hematite: can Raman spectroscopy be used to differentiate them? Vib Spectrosc. 2007;45:117–21.

    Article  Google Scholar 

  24. Frost RL, Ding Z, Ruan HD. Thermal analysis of goethite. Relevance to Australian indigenous art. J Therm Anal Calorim. 2003;71:783–97.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Provincia Autonoma di Trento for financial support through the Projects: PAT-CRS2006 (DIGITEM); MATIS; PAT-CRS2008 (Analisi micro-Raman di materiali).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Gialanella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gialanella, S., Girardi, F., Ischia, G. et al. On the goethite to hematite phase transformation. J Therm Anal Calorim 102, 867–873 (2010). https://doi.org/10.1007/s10973-010-0756-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0756-2

Keywords

Navigation