Skip to main content
Log in

Microstructure of Portland cement mortar amended by burnt kaolin sand

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Two types of raw materials, original kaolin sand OKS I and OKS II were used for experiment. They were transformed (1 h at 650 °C with 10 °C/min temperature increase) to burnt kaolin sand (BKS I and BKS II) with pozzolanic properties. Contents of decisive mineral—metakaolinite—in BKSs are as follows: BKS I (fraction below 0.06 mm) 20%; BKS II (fraction below 0.06 mm) 36% and BKS II (fraction below 0.1 mm) 31% by mass. Mortars with blends of Portland cement (PC) and BKS were prepared announced as: MK I (0.06) with 5 and 10% cement substitution by metakaolinite; MK II (0.06) with 5 and 10% cement substitution by metakaolinite and MK II (0.1) with 5, 10, 15 and 20% cement substitution by metakaolinite. The reference mortar with 100% of PC was made for comparison. All mortars were adjusted on the constant workability 180 ± 5 mm flow. Besides significant increase in compressive strengths—the refinement of pore structure in mortars with BKS connected with decreases in permeability and Ca(OH)2 content were revealed. The above facts confirm pozzolanic reaction of BKS in contact with hydrated PC and indicate perceptiveness of BKS for the use in cement-based systems as a pozzolanic addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mojumdar SC. Processing-moisture resistance and thermal analysis of macro-defect-free materials. J Therm Anal Calorim. 2001;64:1133–9.

    Article  CAS  Google Scholar 

  2. Drábik M, Gáliková L, Hanic F, Sharp JH. MDF-related compositions based on novel low-energy clinker. Chem Pap. 1997;51:363–6.

    Google Scholar 

  3. Palou MT, Majling J, Dováľ M, Kozánková J, Mojumdar SC. Formation and stability of crystallohydrates in the non-equilibrium system during hydration of sab cements. CERAMICS-Silikáty. 2005;49:230–6.

    CAS  Google Scholar 

  4. Janotka I, Krajči L’. Sulphate resistance and passivation ability of the mortar made from pozzolan cement with zeolite. J Therm Anal Calorim. 2008;94:7–14.

    Article  CAS  Google Scholar 

  5. Heikal M, El-Didamony H, Morsy MS. Limestone-filled pozzolanic cement. Cem Concr Res. 2000;30:1827–34.

    Article  CAS  Google Scholar 

  6. Moulin E, Blanc P, Sorrentino D. Influence of key cement chemical parameters on the properties of metakaolin blended cements. Cem Concr Comp. 2001;23:463–9.

    Article  CAS  Google Scholar 

  7. Chandrasekhar S, Ramaswamy S. Influence of mineral impurities on the properties of kaolin and its thermally treated products. Appl Clay Sci. 2002;21:133–42.

    Article  CAS  Google Scholar 

  8. Vavro M, Martinec P. Durability properties of concrete with admixtures of thermally activated kaolins and shales. International science conference on quality and reliability in building industry, Levoča; 2006 pp. 399–404. [ Vavro M, Martinec P. Durability properties of concrete with admixtures of thermallyactivated kaolins and shales. Sborník mezinárodní konference Quality and Reliability in Building Industry, ISBN 80-8073-594-8, FAST TU v Košiciach, s. 399-404, Levoča, Slovensko].

  9. Souza PSL, Dal Molin DCC. Viability of using calcined clays. From industrial by-products, as pozzolans of high reactivity. Cem Concr Res. 2005;35:1993–8.

    Article  CAS  Google Scholar 

  10. Kostuch JA, Walters GV, Jones TR. High performance concretes incorporating metakaolin: a review. In: Dhir RK, Jones MR, Spon FN, editors. Concrete 2000, vol 2; 1993. pp. 1799–1811.

  11. Schvarzman A, Kovler K, Groder GS, Shter GE. The effect of dehydroxylation/amorphization degree on pozzolanic activity of kaolinite. Cem Concr Res. 2003;33:405–16.

    Article  Google Scholar 

  12. Sabir S, Wild S, Baj J. Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Comp. 2001;23:441–54.

    Article  CAS  Google Scholar 

  13. Caldarone MA, Gruber KA, Burg RG. High reactivity metakaolin (HRM): a new generation mineral admixture for high performance concrete. Concr Int. 1994;37–41.

  14. Schvarzman A, Kovler K, Schamban I, Grader G, Shter G. Influence of chemical, phase composition of mineral admixtures on their pozzolanic, activity. Adv Cem Res. 2002;14:35–41.

    Google Scholar 

  15. Frias M, Sánchez de Rojas MI, Cabrera J. The effect that the pozzolanic reaction of metakaolin has on the heat evolution in metakaolin-cement mortars. Cem Concr Res. 2000;30:209–16.

    Article  CAS  Google Scholar 

  16. Moropoulou A, Bakolas A, Aggelakopoulou E. Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Therm Acta. 2004;420:135–40.

    Article  CAS  Google Scholar 

  17. Wild S, Khatib JM, Jones A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem Concr Res. 1996;26:1537–44.

    Article  CAS  Google Scholar 

  18. Zhang MH, Malhotra VM. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem Concr Res. 1995;25:1713–25.

    Article  CAS  Google Scholar 

  19. Khatib JM, Wild S. Pore size distribution of metakaolin paste. Cem Concr Res. 1996;26:1545–53.

    Article  CAS  Google Scholar 

  20. Frias M, Rojas MIS. Influence of the MK on pororus of matrixes based in MK/cement. Mater Constr. 2000;50(259):57–67

    Google Scholar 

  21. Rojas MF, Rojas MIS. Influence of metastable hydrated phases on the pore size distribution and degree of hydration of MK-blended cements cured at 60 C. Cem Concr Res. 2005;35:1292–8.

    Article  CAS  Google Scholar 

  22. Morsy MS, El–Enein A, Hanna B. Microstructure and hydration characteristics of artificial pozzolana-cement pastes containing burnt kaolinite clay. Cem Concr Res. 1997;27:1307–12.

    Article  CAS  Google Scholar 

  23. Oriol M, Pera J. Pozzolanic activity of metakaolin under microwave treatment. Cem Concr Res. 1995;25:265–70.

    Article  CAS  Google Scholar 

  24. Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80.

    Article  CAS  Google Scholar 

  25. Jerga J, Halas P. Ingress of chloride into the prestressed concrete structure. In: Proceedings of the 5th international conference on concrete, Prague, Czech Republic; 1990, pp. 400–404

  26. Jerga J. Physico-mechanical properties of carbonated concrete. Constr Build Mater. 2004;18:645–52.

    Article  Google Scholar 

  27. Khatib JM, Wild S. Sulphate resistance of metakaolin mortar. Cem Concr Res. 1998;28:83–92.

    Article  CAS  Google Scholar 

  28. Asbridge AH Jones TR, Osborne GJ. High performance metakaolin concrete: results of large scale trials in aggressive environments. In: Dhir RK, Hewlett PC, editors. Proceedings of the international conference on concrete in the service of mankind, Radical Concrete Technology. Dundee, Scotland; 1996. pp. 13–24.

  29. Eberl DD. U.S. geological survey, Open-File Report 03-78; 2003, 40 pp.

  30. Bágeľ Ľ, Živica V. Relationship between pore structure and permeability of hardened cement mortars: On the choice of effective pore structure parameter. Cem Conr Res. 1997;27:1225–35.

    Article  Google Scholar 

  31. Frias M. The effect of metakaolin on the reaction products and microporosity in blended cement pastes submitted to long hydration time and high curing temperature. Adv Cem Res. 2006;18:1–6.

    Article  CAS  Google Scholar 

  32. Torres J, de Gutiérrez RM, de Puertas F. Effect of kaolin treatment temperature on mortar chloride permeability. Mater Constr. 2007;57:61–9.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Slovak Grant Agency (project No. 2/0053/09) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Moujmdar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajči, L., Moujmdar, S.C., Kuliffayová, M. et al. Microstructure of Portland cement mortar amended by burnt kaolin sand. J Therm Anal Calorim 100, 779–787 (2010). https://doi.org/10.1007/s10973-010-0718-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-010-0718-8

Keywords

Navigation